CROP SIMULATION Models

These models and simulations have been tagged “CROP SIMULATION”.

SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

===================================

Lampiran  1.   Keterangan peubah dan parameter model simulasi  SUCSOY.INS  (Penning de Vries and van Laar (1982)).


Name

Description

Unit

AMAX

CO2 assimilation rate of leaf at light saturation

kg(CO2)/ha(Leaf)/h

AVRAD

Actual daily radiation (400-700 nm)

J/m2/d

AVRADT

Table measured global radiation (cal/Cm2/d) vs day number

-

CVF

Conversion efficiency for growth of plant dry matter (DM)

kg(DM)/kg (CH2O)

CVFSO

Conversion efficiency for formation of storage organs

kg (DM)/kg (CH2O)

DAY

Number of day in the year from 1st January

day

DEC

Declination of sun with respect to the equator

Degree

DGAC

Daily gross CO2 assimilation -standard clear sky-

kg (CO2)/ha/d

DGAO

Daily gross CO2 assimilation -standard overcast sky-

kg (CO2)/ha/d

DL

Astronomical day length

h

DLE

Effective day length

h

DLP

Photoperiodic day length

h

DLV

Death rate of the leaves

kg/ ha/d

DRC

Photo synthetically active radiation -standard clear sky-

J/m2/d

DRO

Photo synthetically active radiation -standard overcast sky-

J/m2/d

DTGA

Actual daily gross co2 assimilation

kg (CO2)/ha/d

DVRDTB

Relation between rate of development and day length

-

DVRR

Rate of development in reproductive phase in relation to temperature

1/d

DVRRTB

Table of DVRR as function of temperature

-

DVRTTB

Relation between rate of development and temperature

-

DVRV

Rate of development in vegetative phase in relation to temperature

 

 

And day length

1/d

DVS

Development stage of the crop

Fraction

EFF

Efficiency of use of absorbed visible radiation for CO2 assimilation at low light level

kg(CO2)/J/ha/h m2 s

EFFE

EFF based on incident radiation

kg(CO2)/J/ha/h m2 s

FLV

Fraction of leaves in shoot biomass

-

FLVTB

Table FLV vs development stage

-

FOV

Fraction of time that sky is overcast

-

FSH

Fraction of shoot in total plant biomass

-

FSHTB

Table FSH vs development stage

-

FSO

Fraction of storage organs in shoot biomass

-

FSOTB

Table FSO vs development stage

-

FST

Fraction of stems in shoot biomass

-

FSTTB

Table FST vs development stage

-

GLV

Growth rate of the leaves

kg (DM)/ha/d

GPHOT

Daily gross CO2 assimilation

kg (CH2O)/ha/d

GRT

Growth rate of the roots

kg (DM)/ha/d

GSH

Growth rate of the shoot

kg (DM)/ha/d

GSO

Growth rate of the storage biomass

kg (DM)/ha/d

GST

Growth rate of the stems

kg (DM)/ha/d

GTW

Growth rate of total plant biomass

kg (DM)/ha/d

LAI

Leaf area index

m2/m2

LAT

Latitude

Degree

MAINT

Maintenance respiration of the vegetation

kg (CH2O)/ha/d

MAINTS

Maintenance respiration at standard temperature (25 C)

kg (CH2O)/ha/d

NWRT

Negative weight of roots (output variable)

kg (DM)/ha

PI

Circumference of a circle, divided by its diameter

-

O10

Increase in rate of maintenance processes per 10 degree C

-

RDN

Average level incoming photosynthetic active radiation

J/m2/S

RDR

Relative death rate of the leaves

1/d

RDRTB

Table RDR vs development stage

-

REFLC

Reflection coefficient of the canopy

Fraction

SLFA

Specific leaf area

ha(Leaf)/kg(Leaf)

TADRW

Total above-ground biomass

kg /ha

TEFF

Effect of temperature on rate of maintenance respiration

-

TIME

Simulated time

day

TMAXT

Table maximum temperature vs day number

-

TMINT

Table minimum temperature vs day number

-

TMPA

Average air temperature

Degree C

WLV

Weight of the green leaves

kg /ha

WLVD

Weight of the dead leaves

kg /ha

WLVI

Initial weight of the leaves

kg /ha

WLVT

Weight of the green plus dead leaves (output variable)

kg /ha

WRT

Weight of the dead leaves

kg /ha

WRTI

Initial weight of the roots

kg /ha

WSO

Weight of the storage organs

kg /ha

WST

Weight of the stems

kg /ha

WVEG

Weight of the vegetative parts (output variable)

kg /ha




SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Wheat   and then Called SUCWHT.INS               Validasi model SUCWHT.INS dilakukan dengan cara memb
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Wheat 
and then Called SUCWHT.INS




Validasi model SUCWHT.INS dilakukan dengan cara membandingkan hasil simulasi hasil Wheat (WSO) dengan model SUCROS.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) dan data partisi tanaman Wheat memakai data yang sudah ada pada program SUCROS.CSM (Keulen et. al. , 1982) .

Hasil simulasi potensi hasil Wheat (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  390 hari diperoleh hasil masing-masing sebesar 3805,24 kg/ha (SUCWHT.INS), dan 3805,10 (SUCROS.CSM);  dengan Koefisien determinasi (R2) = 1 dan Root Mean Square Error (RMSE) = 0,11 kg/ha.

Kesimpulannya SUCWHT.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Wheat dengan partisi dan parameter tanaman tanaman Kedelai.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.


====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com
SUCROS.CSM  A Simple and Universal Crop Growth Simulator written in Continous System Modeling Program III (CSMP)  (Keulen, H.van, Penning de Vries, F. W. T. and E.M.Drees. A summary
model for crop growth. In Simulation of plant growth and crop
production, eds F. W. T. Penning de Vries & H. H. va
SUCROS.CSM 
A Simple and Universal Crop Growth Simulator written in Continous System Modeling Program III (CSMP)
(Keulen, H.van, Penning de Vries, F. W. T. and E.M.Drees. A summary model for crop growth. In Simulation of plant growth and crop production, eds F. W. T. Penning de Vries & H. H. van Laar. Simulation Monographs, PUDOC, Wageningen, The Netherlands. pp. 87-97).


RE WRITEN IN Insightmaker.com

Simulation can stop time at the same time (390 day) if DVS=1.8 not 2.
However the  WSO (wheat yield) = 4.293 t/ha > 3.805 t/ha (DVS =2 is used in SUCROS.CSM).

I am appreciate that if someone can help to improve the model of SUCROS written in INSIGHTMAKER.
Thank You.

ikt,  7 april 2017
Lab. System Dynamic
Indonesian Legume and Tuber Crops Research Institute (ILETRI).



SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com
SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

===================================

Lampiran  1.   Keterangan peubah dan parameter model simulasi  SUCSOY.INS  (Penning de Vries and van Laar (1982)).


Name

Description

Unit

AMAX

CO2 assimilation rate of leaf at light saturation

kg(CO2)/ha(Leaf)/h

AVRAD

Actual daily radiation (400-700 nm)

J/m2/d

AVRADT

Table measured global radiation (cal/Cm2/d) vs day number

-

CVF

Conversion efficiency for growth of plant dry matter (DM)

kg(DM)/kg (CH2O)

CVFSO

Conversion efficiency for formation of storage organs

kg (DM)/kg (CH2O)

DAY

Number of day in the year from 1st January

day

DEC

Declination of sun with respect to the equator

Degree

DGAC

Daily gross CO2 assimilation -standard clear sky-

kg (CO2)/ha/d

DGAO

Daily gross CO2 assimilation -standard overcast sky-

kg (CO2)/ha/d

DL

Astronomical day length

h

DLE

Effective day length

h

DLP

Photoperiodic day length

h

DLV

Death rate of the leaves

kg/ ha/d

DRC

Photo synthetically active radiation -standard clear sky-

J/m2/d

DRO

Photo synthetically active radiation -standard overcast sky-

J/m2/d

DTGA

Actual daily gross co2 assimilation

kg (CO2)/ha/d

DVRDTB

Relation between rate of development and day length

-

DVRR

Rate of development in reproductive phase in relation to temperature

1/d

DVRRTB

Table of DVRR as function of temperature

-

DVRTTB

Relation between rate of development and temperature

-

DVRV

Rate of development in vegetative phase in relation to temperature

 

 

And day length

1/d

DVS

Development stage of the crop

Fraction

EFF

Efficiency of use of absorbed visible radiation for CO2 assimilation at low light level

kg(CO2)/J/ha/h m2 s

EFFE

EFF based on incident radiation

kg(CO2)/J/ha/h m2 s

FLV

Fraction of leaves in shoot biomass

-

FLVTB

Table FLV vs development stage

-

FOV

Fraction of time that sky is overcast

-

FSH

Fraction of shoot in total plant biomass

-

FSHTB

Table FSH vs development stage

-

FSO

Fraction of storage organs in shoot biomass

-

FSOTB

Table FSO vs development stage

-

FST

Fraction of stems in shoot biomass

-

FSTTB

Table FST vs development stage

-

GLV

Growth rate of the leaves

kg (DM)/ha/d

GPHOT

Daily gross CO2 assimilation

kg (CH2O)/ha/d

GRT

Growth rate of the roots

kg (DM)/ha/d

GSH

Growth rate of the shoot

kg (DM)/ha/d

GSO

Growth rate of the storage biomass

kg (DM)/ha/d

GST

Growth rate of the stems

kg (DM)/ha/d

GTW

Growth rate of total plant biomass

kg (DM)/ha/d

LAI

Leaf area index

m2/m2

LAT

Latitude

Degree

MAINT

Maintenance respiration of the vegetation

kg (CH2O)/ha/d

MAINTS

Maintenance respiration at standard temperature (25 C)

kg (CH2O)/ha/d

NWRT

Negative weight of roots (output variable)

kg (DM)/ha

PI

Circumference of a circle, divided by its diameter

-

O10

Increase in rate of maintenance processes per 10 degree C

-

RDN

Average level incoming photosynthetic active radiation

J/m2/S

RDR

Relative death rate of the leaves

1/d

RDRTB

Table RDR vs development stage

-

REFLC

Reflection coefficient of the canopy

Fraction

SLFA

Specific leaf area

ha(Leaf)/kg(Leaf)

TADRW

Total above-ground biomass

kg /ha

TEFF

Effect of temperature on rate of maintenance respiration

-

TIME

Simulated time

day

TMAXT

Table maximum temperature vs day number

-

TMINT

Table minimum temperature vs day number

-

TMPA

Average air temperature

Degree C

WLV

Weight of the green leaves

kg /ha

WLVD

Weight of the dead leaves

kg /ha

WLVI

Initial weight of the leaves

kg /ha

WLVT

Weight of the green plus dead leaves (output variable)

kg /ha

WRT

Weight of the dead leaves

kg /ha

WRTI

Initial weight of the roots

kg /ha

WSO

Weight of the storage organs

kg /ha

WST

Weight of the stems

kg /ha

WVEG

Weight of the vegetative parts (output variable)

kg /ha




SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

===================================

Lampiran  1.   Keterangan peubah dan parameter model simulasi  SUCSOY.INS  (Penning de Vries and van Laar (1982)).


Name

Description

Unit

AMAX

CO2 assimilation rate of leaf at light saturation

kg(CO2)/ha(Leaf)/h

AVRAD

Actual daily radiation (400-700 nm)

J/m2/d

AVRADT

Table measured global radiation (cal/Cm2/d) vs day number

-

CVF

Conversion efficiency for growth of plant dry matter (DM)

kg(DM)/kg (CH2O)

CVFSO

Conversion efficiency for formation of storage organs

kg (DM)/kg (CH2O)

DAY

Number of day in the year from 1st January

day

DEC

Declination of sun with respect to the equator

Degree

DGAC

Daily gross CO2 assimilation -standard clear sky-

kg (CO2)/ha/d

DGAO

Daily gross CO2 assimilation -standard overcast sky-

kg (CO2)/ha/d

DL

Astronomical day length

h

DLE

Effective day length

h

DLP

Photoperiodic day length

h

DLV

Death rate of the leaves

kg/ ha/d

DRC

Photo synthetically active radiation -standard clear sky-

J/m2/d

DRO

Photo synthetically active radiation -standard overcast sky-

J/m2/d

DTGA

Actual daily gross co2 assimilation

kg (CO2)/ha/d

DVRDTB

Relation between rate of development and day length

-

DVRR

Rate of development in reproductive phase in relation to temperature

1/d

DVRRTB

Table of DVRR as function of temperature

-

DVRTTB

Relation between rate of development and temperature

-

DVRV

Rate of development in vegetative phase in relation to temperature

 

 

And day length

1/d

DVS

Development stage of the crop

Fraction

EFF

Efficiency of use of absorbed visible radiation for CO2 assimilation at low light level

kg(CO2)/J/ha/h m2 s

EFFE

EFF based on incident radiation

kg(CO2)/J/ha/h m2 s

FLV

Fraction of leaves in shoot biomass

-

FLVTB

Table FLV vs development stage

-

FOV

Fraction of time that sky is overcast

-

FSH

Fraction of shoot in total plant biomass

-

FSHTB

Table FSH vs development stage

-

FSO

Fraction of storage organs in shoot biomass

-

FSOTB

Table FSO vs development stage

-

FST

Fraction of stems in shoot biomass

-

FSTTB

Table FST vs development stage

-

GLV

Growth rate of the leaves

kg (DM)/ha/d

GPHOT

Daily gross CO2 assimilation

kg (CH2O)/ha/d

GRT

Growth rate of the roots

kg (DM)/ha/d

GSH

Growth rate of the shoot

kg (DM)/ha/d

GSO

Growth rate of the storage biomass

kg (DM)/ha/d

GST

Growth rate of the stems

kg (DM)/ha/d

GTW

Growth rate of total plant biomass

kg (DM)/ha/d

LAI

Leaf area index

m2/m2

LAT

Latitude

Degree

MAINT

Maintenance respiration of the vegetation

kg (CH2O)/ha/d

MAINTS

Maintenance respiration at standard temperature (25 C)

kg (CH2O)/ha/d

NWRT

Negative weight of roots (output variable)

kg (DM)/ha

PI

Circumference of a circle, divided by its diameter

-

O10

Increase in rate of maintenance processes per 10 degree C

-

RDN

Average level incoming photosynthetic active radiation

J/m2/S

RDR

Relative death rate of the leaves

1/d

RDRTB

Table RDR vs development stage

-

REFLC

Reflection coefficient of the canopy

Fraction

SLFA

Specific leaf area

ha(Leaf)/kg(Leaf)

TADRW

Total above-ground biomass

kg /ha

TEFF

Effect of temperature on rate of maintenance respiration

-

TIME

Simulated time

day

TMAXT

Table maximum temperature vs day number

-

TMINT

Table minimum temperature vs day number

-

TMPA

Average air temperature

Degree C

WLV

Weight of the green leaves

kg /ha

WLVD

Weight of the dead leaves

kg /ha

WLVI

Initial weight of the leaves

kg /ha

WLVT

Weight of the green plus dead leaves (output variable)

kg /ha

WRT

Weight of the dead leaves

kg /ha

WRTI

Initial weight of the roots

kg /ha

WSO

Weight of the storage organs

kg /ha

WST

Weight of the stems

kg /ha

WVEG

Weight of the vegetative parts (output variable)

kg /ha




SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

===================================

Lampiran  1.   Keterangan peubah dan parameter model simulasi  SUCSOY.INS  (Penning de Vries and van Laar (1982)).


Name

Description

Unit

AMAX

CO2 assimilation rate of leaf at light saturation

kg(CO2)/ha(Leaf)/h

AVRAD

Actual daily radiation (400-700 nm)

J/m2/d

AVRADT

Table measured global radiation (cal/Cm2/d) vs day number

-

CVF

Conversion efficiency for growth of plant dry matter (DM)

kg(DM)/kg (CH2O)

CVFSO

Conversion efficiency for formation of storage organs

kg (DM)/kg (CH2O)

DAY

Number of day in the year from 1st January

day

DEC

Declination of sun with respect to the equator

Degree

DGAC

Daily gross CO2 assimilation -standard clear sky-

kg (CO2)/ha/d

DGAO

Daily gross CO2 assimilation -standard overcast sky-

kg (CO2)/ha/d

DL

Astronomical day length

h

DLE

Effective day length

h

DLP

Photoperiodic day length

h

DLV

Death rate of the leaves

kg/ ha/d

DRC

Photo synthetically active radiation -standard clear sky-

J/m2/d

DRO

Photo synthetically active radiation -standard overcast sky-

J/m2/d

DTGA

Actual daily gross co2 assimilation

kg (CO2)/ha/d

DVRDTB

Relation between rate of development and day length

-

DVRR

Rate of development in reproductive phase in relation to temperature

1/d

DVRRTB

Table of DVRR as function of temperature

-

DVRTTB

Relation between rate of development and temperature

-

DVRV

Rate of development in vegetative phase in relation to temperature

 

 

And day length

1/d

DVS

Development stage of the crop

Fraction

EFF

Efficiency of use of absorbed visible radiation for CO2 assimilation at low light level

kg(CO2)/J/ha/h m2 s

EFFE

EFF based on incident radiation

kg(CO2)/J/ha/h m2 s

FLV

Fraction of leaves in shoot biomass

-

FLVTB

Table FLV vs development stage

-

FOV

Fraction of time that sky is overcast

-

FSH

Fraction of shoot in total plant biomass

-

FSHTB

Table FSH vs development stage

-

FSO

Fraction of storage organs in shoot biomass

-

FSOTB

Table FSO vs development stage

-

FST

Fraction of stems in shoot biomass

-

FSTTB

Table FST vs development stage

-

GLV

Growth rate of the leaves

kg (DM)/ha/d

GPHOT

Daily gross CO2 assimilation

kg (CH2O)/ha/d

GRT

Growth rate of the roots

kg (DM)/ha/d

GSH

Growth rate of the shoot

kg (DM)/ha/d

GSO

Growth rate of the storage biomass

kg (DM)/ha/d

GST

Growth rate of the stems

kg (DM)/ha/d

GTW

Growth rate of total plant biomass

kg (DM)/ha/d

LAI

Leaf area index

m2/m2

LAT

Latitude

Degree

MAINT

Maintenance respiration of the vegetation

kg (CH2O)/ha/d

MAINTS

Maintenance respiration at standard temperature (25 C)

kg (CH2O)/ha/d

NWRT

Negative weight of roots (output variable)

kg (DM)/ha

PI

Circumference of a circle, divided by its diameter

-

O10

Increase in rate of maintenance processes per 10 degree C

-

RDN

Average level incoming photosynthetic active radiation

J/m2/S

RDR

Relative death rate of the leaves

1/d

RDRTB

Table RDR vs development stage

-

REFLC

Reflection coefficient of the canopy

Fraction

SLFA

Specific leaf area

ha(Leaf)/kg(Leaf)

TADRW

Total above-ground biomass

kg /ha

TEFF

Effect of temperature on rate of maintenance respiration

-

TIME

Simulated time

day

TMAXT

Table maximum temperature vs day number

-

TMINT

Table minimum temperature vs day number

-

TMPA

Average air temperature

Degree C

WLV

Weight of the green leaves

kg /ha

WLVD

Weight of the dead leaves

kg /ha

WLVI

Initial weight of the leaves

kg /ha

WLVT

Weight of the green plus dead leaves (output variable)

kg /ha

WRT

Weight of the dead leaves

kg /ha

WRTI

Initial weight of the roots

kg /ha

WSO

Weight of the storage organs

kg /ha

WST

Weight of the stems

kg /ha

WVEG

Weight of the vegetative parts (output variable)

kg /ha




SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

===================================

Lampiran  1.   Keterangan peubah dan parameter model simulasi  SUCSOY.INS  (Penning de Vries and van Laar (1982)).


Name

Description

Unit

AMAX

CO2 assimilation rate of leaf at light saturation

kg(CO2)/ha(Leaf)/h

AVRAD

Actual daily radiation (400-700 nm)

J/m2/d

AVRADT

Table measured global radiation (cal/Cm2/d) vs day number

-

CVF

Conversion efficiency for growth of plant dry matter (DM)

kg(DM)/kg (CH2O)

CVFSO

Conversion efficiency for formation of storage organs

kg (DM)/kg (CH2O)

DAY

Number of day in the year from 1st January

day

DEC

Declination of sun with respect to the equator

Degree

DGAC

Daily gross CO2 assimilation -standard clear sky-

kg (CO2)/ha/d

DGAO

Daily gross CO2 assimilation -standard overcast sky-

kg (CO2)/ha/d

DL

Astronomical day length

h

DLE

Effective day length

h

DLP

Photoperiodic day length

h

DLV

Death rate of the leaves

kg/ ha/d

DRC

Photo synthetically active radiation -standard clear sky-

J/m2/d

DRO

Photo synthetically active radiation -standard overcast sky-

J/m2/d

DTGA

Actual daily gross co2 assimilation

kg (CO2)/ha/d

DVRDTB

Relation between rate of development and day length

-

DVRR

Rate of development in reproductive phase in relation to temperature

1/d

DVRRTB

Table of DVRR as function of temperature

-

DVRTTB

Relation between rate of development and temperature

-

DVRV

Rate of development in vegetative phase in relation to temperature

 

 

And day length

1/d

DVS

Development stage of the crop

Fraction

EFF

Efficiency of use of absorbed visible radiation for CO2 assimilation at low light level

kg(CO2)/J/ha/h m2 s

EFFE

EFF based on incident radiation

kg(CO2)/J/ha/h m2 s

FLV

Fraction of leaves in shoot biomass

-

FLVTB

Table FLV vs development stage

-

FOV

Fraction of time that sky is overcast

-

FSH

Fraction of shoot in total plant biomass

-

FSHTB

Table FSH vs development stage

-

FSO

Fraction of storage organs in shoot biomass

-

FSOTB

Table FSO vs development stage

-

FST

Fraction of stems in shoot biomass

-

FSTTB

Table FST vs development stage

-

GLV

Growth rate of the leaves

kg (DM)/ha/d

GPHOT

Daily gross CO2 assimilation

kg (CH2O)/ha/d

GRT

Growth rate of the roots

kg (DM)/ha/d

GSH

Growth rate of the shoot

kg (DM)/ha/d

GSO

Growth rate of the storage biomass

kg (DM)/ha/d

GST

Growth rate of the stems

kg (DM)/ha/d

GTW

Growth rate of total plant biomass

kg (DM)/ha/d

LAI

Leaf area index

m2/m2

LAT

Latitude

Degree

MAINT

Maintenance respiration of the vegetation

kg (CH2O)/ha/d

MAINTS

Maintenance respiration at standard temperature (25 C)

kg (CH2O)/ha/d

NWRT

Negative weight of roots (output variable)

kg (DM)/ha

PI

Circumference of a circle, divided by its diameter

-

O10

Increase in rate of maintenance processes per 10 degree C

-

RDN

Average level incoming photosynthetic active radiation

J/m2/S

RDR

Relative death rate of the leaves

1/d

RDRTB

Table RDR vs development stage

-

REFLC

Reflection coefficient of the canopy

Fraction

SLFA

Specific leaf area

ha(Leaf)/kg(Leaf)

TADRW

Total above-ground biomass

kg /ha

TEFF

Effect of temperature on rate of maintenance respiration

-

TIME

Simulated time

day

TMAXT

Table maximum temperature vs day number

-

TMINT

Table minimum temperature vs day number

-

TMPA

Average air temperature

Degree C

WLV

Weight of the green leaves

kg /ha

WLVD

Weight of the dead leaves

kg /ha

WLVI

Initial weight of the leaves

kg /ha

WLVT

Weight of the green plus dead leaves (output variable)

kg /ha

WRT

Weight of the dead leaves

kg /ha

WRTI

Initial weight of the roots

kg /ha

WSO

Weight of the storage organs

kg /ha

WST

Weight of the stems

kg /ha

WVEG

Weight of the vegetative parts (output variable)

kg /ha




SUCROS.CSM  A Simple and Universal Crop Growth Simulator written in Continous System Modeling Program III (CSMP)  (Keulen, H.van, Penning de Vries, F. W. T. and E.M.Drees. A summary
model for crop growth. In Simulation of plant growth and crop
production, eds F. W. T. Penning de Vries & H. H. va
SUCROS.CSM 
A Simple and Universal Crop Growth Simulator written in Continous System Modeling Program III (CSMP)
(Keulen, H.van, Penning de Vries, F. W. T. and E.M.Drees. A summary model for crop growth. In Simulation of plant growth and crop production, eds F. W. T. Penning de Vries & H. H. van Laar. Simulation Monographs, PUDOC, Wageningen, The Netherlands. pp. 87-97).


RE WRITEN IN Insightmaker.com

Simulation can stop time at the same time (390 day) if DVS=1.8 not 2.
However the  WSO (wheat yield) = 4.293 t/ha > 3.805 t/ha (DVS =2 is used in SUCROS.CSM).

I am appreciate that if someone can help to improve the model of SUCROS written in INSIGHTMAKER.
Thank You.

ikt,  7 april 2017
Lab. System Dynamic
Indonesian Legume and Tuber Crops Research Institute (ILETRI).



SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

===================================

Lampiran  1.   Keterangan peubah dan parameter model simulasi  SUCSOY.INS  (Penning de Vries and van Laar (1982)).


Name

Description

Unit

AMAX

CO2 assimilation rate of leaf at light saturation

kg(CO2)/ha(Leaf)/h

AVRAD

Actual daily radiation (400-700 nm)

J/m2/d

AVRADT

Table measured global radiation (cal/Cm2/d) vs day number

-

CVF

Conversion efficiency for growth of plant dry matter (DM)

kg(DM)/kg (CH2O)

CVFSO

Conversion efficiency for formation of storage organs

kg (DM)/kg (CH2O)

DAY

Number of day in the year from 1st January

day

DEC

Declination of sun with respect to the equator

Degree

DGAC

Daily gross CO2 assimilation -standard clear sky-

kg (CO2)/ha/d

DGAO

Daily gross CO2 assimilation -standard overcast sky-

kg (CO2)/ha/d

DL

Astronomical day length

h

DLE

Effective day length

h

DLP

Photoperiodic day length

h

DLV

Death rate of the leaves

kg/ ha/d

DRC

Photo synthetically active radiation -standard clear sky-

J/m2/d

DRO

Photo synthetically active radiation -standard overcast sky-

J/m2/d

DTGA

Actual daily gross co2 assimilation

kg (CO2)/ha/d

DVRDTB

Relation between rate of development and day length

-

DVRR

Rate of development in reproductive phase in relation to temperature

1/d

DVRRTB

Table of DVRR as function of temperature

-

DVRTTB

Relation between rate of development and temperature

-

DVRV

Rate of development in vegetative phase in relation to temperature

 

 

And day length

1/d

DVS

Development stage of the crop

Fraction

EFF

Efficiency of use of absorbed visible radiation for CO2 assimilation at low light level

kg(CO2)/J/ha/h m2 s

EFFE

EFF based on incident radiation

kg(CO2)/J/ha/h m2 s

FLV

Fraction of leaves in shoot biomass

-

FLVTB

Table FLV vs development stage

-

FOV

Fraction of time that sky is overcast

-

FSH

Fraction of shoot in total plant biomass

-

FSHTB

Table FSH vs development stage

-

FSO

Fraction of storage organs in shoot biomass

-

FSOTB

Table FSO vs development stage

-

FST

Fraction of stems in shoot biomass

-

FSTTB

Table FST vs development stage

-

GLV

Growth rate of the leaves

kg (DM)/ha/d

GPHOT

Daily gross CO2 assimilation

kg (CH2O)/ha/d

GRT

Growth rate of the roots

kg (DM)/ha/d

GSH

Growth rate of the shoot

kg (DM)/ha/d

GSO

Growth rate of the storage biomass

kg (DM)/ha/d

GST

Growth rate of the stems

kg (DM)/ha/d

GTW

Growth rate of total plant biomass

kg (DM)/ha/d

LAI

Leaf area index

m2/m2

LAT

Latitude

Degree

MAINT

Maintenance respiration of the vegetation

kg (CH2O)/ha/d

MAINTS

Maintenance respiration at standard temperature (25 C)

kg (CH2O)/ha/d

NWRT

Negative weight of roots (output variable)

kg (DM)/ha

PI

Circumference of a circle, divided by its diameter

-

O10

Increase in rate of maintenance processes per 10 degree C

-

RDN

Average level incoming photosynthetic active radiation

J/m2/S

RDR

Relative death rate of the leaves

1/d

RDRTB

Table RDR vs development stage

-

REFLC

Reflection coefficient of the canopy

Fraction

SLFA

Specific leaf area

ha(Leaf)/kg(Leaf)

TADRW

Total above-ground biomass

kg /ha

TEFF

Effect of temperature on rate of maintenance respiration

-

TIME

Simulated time

day

TMAXT

Table maximum temperature vs day number

-

TMINT

Table minimum temperature vs day number

-

TMPA

Average air temperature

Degree C

WLV

Weight of the green leaves

kg /ha

WLVD

Weight of the dead leaves

kg /ha

WLVI

Initial weight of the leaves

kg /ha

WLVT

Weight of the green plus dead leaves (output variable)

kg /ha

WRT

Weight of the dead leaves

kg /ha

WRTI

Initial weight of the roots

kg /ha

WSO

Weight of the storage organs

kg /ha

WST

Weight of the stems

kg /ha

WVEG

Weight of the vegetative parts (output variable)

kg /ha




SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

===================================

Lampiran  1.   Keterangan peubah dan parameter model simulasi  SUCSOY.INS  (Penning de Vries and van Laar (1982)).


Name

Description

Unit

AMAX

CO2 assimilation rate of leaf at light saturation

kg(CO2)/ha(Leaf)/h

AVRAD

Actual daily radiation (400-700 nm)

J/m2/d

AVRADT

Table measured global radiation (cal/Cm2/d) vs day number

-

CVF

Conversion efficiency for growth of plant dry matter (DM)

kg(DM)/kg (CH2O)

CVFSO

Conversion efficiency for formation of storage organs

kg (DM)/kg (CH2O)

DAY

Number of day in the year from 1st January

day

DEC

Declination of sun with respect to the equator

Degree

DGAC

Daily gross CO2 assimilation -standard clear sky-

kg (CO2)/ha/d

DGAO

Daily gross CO2 assimilation -standard overcast sky-

kg (CO2)/ha/d

DL

Astronomical day length

h

DLE

Effective day length

h

DLP

Photoperiodic day length

h

DLV

Death rate of the leaves

kg/ ha/d

DRC

Photo synthetically active radiation -standard clear sky-

J/m2/d

DRO

Photo synthetically active radiation -standard overcast sky-

J/m2/d

DTGA

Actual daily gross co2 assimilation

kg (CO2)/ha/d

DVRDTB

Relation between rate of development and day length

-

DVRR

Rate of development in reproductive phase in relation to temperature

1/d

DVRRTB

Table of DVRR as function of temperature

-

DVRTTB

Relation between rate of development and temperature

-

DVRV

Rate of development in vegetative phase in relation to temperature

 

 

And day length

1/d

DVS

Development stage of the crop

Fraction

EFF

Efficiency of use of absorbed visible radiation for CO2 assimilation at low light level

kg(CO2)/J/ha/h m2 s

EFFE

EFF based on incident radiation

kg(CO2)/J/ha/h m2 s

FLV

Fraction of leaves in shoot biomass

-

FLVTB

Table FLV vs development stage

-

FOV

Fraction of time that sky is overcast

-

FSH

Fraction of shoot in total plant biomass

-

FSHTB

Table FSH vs development stage

-

FSO

Fraction of storage organs in shoot biomass

-

FSOTB

Table FSO vs development stage

-

FST

Fraction of stems in shoot biomass

-

FSTTB

Table FST vs development stage

-

GLV

Growth rate of the leaves

kg (DM)/ha/d

GPHOT

Daily gross CO2 assimilation

kg (CH2O)/ha/d

GRT

Growth rate of the roots

kg (DM)/ha/d

GSH

Growth rate of the shoot

kg (DM)/ha/d

GSO

Growth rate of the storage biomass

kg (DM)/ha/d

GST

Growth rate of the stems

kg (DM)/ha/d

GTW

Growth rate of total plant biomass

kg (DM)/ha/d

LAI

Leaf area index

m2/m2

LAT

Latitude

Degree

MAINT

Maintenance respiration of the vegetation

kg (CH2O)/ha/d

MAINTS

Maintenance respiration at standard temperature (25 C)

kg (CH2O)/ha/d

NWRT

Negative weight of roots (output variable)

kg (DM)/ha

PI

Circumference of a circle, divided by its diameter

-

O10

Increase in rate of maintenance processes per 10 degree C

-

RDN

Average level incoming photosynthetic active radiation

J/m2/S

RDR

Relative death rate of the leaves

1/d

RDRTB

Table RDR vs development stage

-

REFLC

Reflection coefficient of the canopy

Fraction

SLFA

Specific leaf area

ha(Leaf)/kg(Leaf)

TADRW

Total above-ground biomass

kg /ha

TEFF

Effect of temperature on rate of maintenance respiration

-

TIME

Simulated time

day

TMAXT

Table maximum temperature vs day number

-

TMINT

Table minimum temperature vs day number

-

TMPA

Average air temperature

Degree C

WLV

Weight of the green leaves

kg /ha

WLVD

Weight of the dead leaves

kg /ha

WLVI

Initial weight of the leaves

kg /ha

WLVT

Weight of the green plus dead leaves (output variable)

kg /ha

WRT

Weight of the dead leaves

kg /ha

WRTI

Initial weight of the roots

kg /ha

WSO

Weight of the storage organs

kg /ha

WST

Weight of the stems

kg /ha

WVEG

Weight of the vegetative parts (output variable)

kg /ha




SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

===================================

Lampiran  1.   Keterangan peubah dan parameter model simulasi  SUCSOY.INS  (Penning de Vries and van Laar (1982)).


Name

Description

Unit

AMAX

CO2 assimilation rate of leaf at light saturation

kg(CO2)/ha(Leaf)/h

AVRAD

Actual daily radiation (400-700 nm)

J/m2/d

AVRADT

Table measured global radiation (cal/Cm2/d) vs day number

-

CVF

Conversion efficiency for growth of plant dry matter (DM)

kg(DM)/kg (CH2O)

CVFSO

Conversion efficiency for formation of storage organs

kg (DM)/kg (CH2O)

DAY

Number of day in the year from 1st January

day

DEC

Declination of sun with respect to the equator

Degree

DGAC

Daily gross CO2 assimilation -standard clear sky-

kg (CO2)/ha/d

DGAO

Daily gross CO2 assimilation -standard overcast sky-

kg (CO2)/ha/d

DL

Astronomical day length

h

DLE

Effective day length

h

DLP

Photoperiodic day length

h

DLV

Death rate of the leaves

kg/ ha/d

DRC

Photo synthetically active radiation -standard clear sky-

J/m2/d

DRO

Photo synthetically active radiation -standard overcast sky-

J/m2/d

DTGA

Actual daily gross co2 assimilation

kg (CO2)/ha/d

DVRDTB

Relation between rate of development and day length

-

DVRR

Rate of development in reproductive phase in relation to temperature

1/d

DVRRTB

Table of DVRR as function of temperature

-

DVRTTB

Relation between rate of development and temperature

-

DVRV

Rate of development in vegetative phase in relation to temperature

 

 

And day length

1/d

DVS

Development stage of the crop

Fraction

EFF

Efficiency of use of absorbed visible radiation for CO2 assimilation at low light level

kg(CO2)/J/ha/h m2 s

EFFE

EFF based on incident radiation

kg(CO2)/J/ha/h m2 s

FLV

Fraction of leaves in shoot biomass

-

FLVTB

Table FLV vs development stage

-

FOV

Fraction of time that sky is overcast

-

FSH

Fraction of shoot in total plant biomass

-

FSHTB

Table FSH vs development stage

-

FSO

Fraction of storage organs in shoot biomass

-

FSOTB

Table FSO vs development stage

-

FST

Fraction of stems in shoot biomass

-

FSTTB

Table FST vs development stage

-

GLV

Growth rate of the leaves

kg (DM)/ha/d

GPHOT

Daily gross CO2 assimilation

kg (CH2O)/ha/d

GRT

Growth rate of the roots

kg (DM)/ha/d

GSH

Growth rate of the shoot

kg (DM)/ha/d

GSO

Growth rate of the storage biomass

kg (DM)/ha/d

GST

Growth rate of the stems

kg (DM)/ha/d

GTW

Growth rate of total plant biomass

kg (DM)/ha/d

LAI

Leaf area index

m2/m2

LAT

Latitude

Degree

MAINT

Maintenance respiration of the vegetation

kg (CH2O)/ha/d

MAINTS

Maintenance respiration at standard temperature (25 C)

kg (CH2O)/ha/d

NWRT

Negative weight of roots (output variable)

kg (DM)/ha

PI

Circumference of a circle, divided by its diameter

-

O10

Increase in rate of maintenance processes per 10 degree C

-

RDN

Average level incoming photosynthetic active radiation

J/m2/S

RDR

Relative death rate of the leaves

1/d

RDRTB

Table RDR vs development stage

-

REFLC

Reflection coefficient of the canopy

Fraction

SLFA

Specific leaf area

ha(Leaf)/kg(Leaf)

TADRW

Total above-ground biomass

kg /ha

TEFF

Effect of temperature on rate of maintenance respiration

-

TIME

Simulated time

day

TMAXT

Table maximum temperature vs day number

-

TMINT

Table minimum temperature vs day number

-

TMPA

Average air temperature

Degree C

WLV

Weight of the green leaves

kg /ha

WLVD

Weight of the dead leaves

kg /ha

WLVI

Initial weight of the leaves

kg /ha

WLVT

Weight of the green plus dead leaves (output variable)

kg /ha

WRT

Weight of the dead leaves

kg /ha

WRTI

Initial weight of the roots

kg /ha

WSO

Weight of the storage organs

kg /ha

WST

Weight of the stems

kg /ha

WVEG

Weight of the vegetative parts (output variable)

kg /ha




SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

===================================

Lampiran  1.   Keterangan peubah dan parameter model simulasi  SUCSOY.INS  (Penning de Vries and van Laar (1982)).


Name

Description

Unit

AMAX

CO2 assimilation rate of leaf at light saturation

kg(CO2)/ha(Leaf)/h

AVRAD

Actual daily radiation (400-700 nm)

J/m2/d

AVRADT

Table measured global radiation (cal/Cm2/d) vs day number

-

CVF

Conversion efficiency for growth of plant dry matter (DM)

kg(DM)/kg (CH2O)

CVFSO

Conversion efficiency for formation of storage organs

kg (DM)/kg (CH2O)

DAY

Number of day in the year from 1st January

day

DEC

Declination of sun with respect to the equator

Degree

DGAC

Daily gross CO2 assimilation -standard clear sky-

kg (CO2)/ha/d

DGAO

Daily gross CO2 assimilation -standard overcast sky-

kg (CO2)/ha/d

DL

Astronomical day length

h

DLE

Effective day length

h

DLP

Photoperiodic day length

h

DLV

Death rate of the leaves

kg/ ha/d

DRC

Photo synthetically active radiation -standard clear sky-

J/m2/d

DRO

Photo synthetically active radiation -standard overcast sky-

J/m2/d

DTGA

Actual daily gross co2 assimilation

kg (CO2)/ha/d

DVRDTB

Relation between rate of development and day length

-

DVRR

Rate of development in reproductive phase in relation to temperature

1/d

DVRRTB

Table of DVRR as function of temperature

-

DVRTTB

Relation between rate of development and temperature

-

DVRV

Rate of development in vegetative phase in relation to temperature

 

 

And day length

1/d

DVS

Development stage of the crop

Fraction

EFF

Efficiency of use of absorbed visible radiation for CO2 assimilation at low light level

kg(CO2)/J/ha/h m2 s

EFFE

EFF based on incident radiation

kg(CO2)/J/ha/h m2 s

FLV

Fraction of leaves in shoot biomass

-

FLVTB

Table FLV vs development stage

-

FOV

Fraction of time that sky is overcast

-

FSH

Fraction of shoot in total plant biomass

-

FSHTB

Table FSH vs development stage

-

FSO

Fraction of storage organs in shoot biomass

-

FSOTB

Table FSO vs development stage

-

FST

Fraction of stems in shoot biomass

-

FSTTB

Table FST vs development stage

-

GLV

Growth rate of the leaves

kg (DM)/ha/d

GPHOT

Daily gross CO2 assimilation

kg (CH2O)/ha/d

GRT

Growth rate of the roots

kg (DM)/ha/d

GSH

Growth rate of the shoot

kg (DM)/ha/d

GSO

Growth rate of the storage biomass

kg (DM)/ha/d

GST

Growth rate of the stems

kg (DM)/ha/d

GTW

Growth rate of total plant biomass

kg (DM)/ha/d

LAI

Leaf area index

m2/m2

LAT

Latitude

Degree

MAINT

Maintenance respiration of the vegetation

kg (CH2O)/ha/d

MAINTS

Maintenance respiration at standard temperature (25 C)

kg (CH2O)/ha/d

NWRT

Negative weight of roots (output variable)

kg (DM)/ha

PI

Circumference of a circle, divided by its diameter

-

O10

Increase in rate of maintenance processes per 10 degree C

-

RDN

Average level incoming photosynthetic active radiation

J/m2/S

RDR

Relative death rate of the leaves

1/d

RDRTB

Table RDR vs development stage

-

REFLC

Reflection coefficient of the canopy

Fraction

SLFA

Specific leaf area

ha(Leaf)/kg(Leaf)

TADRW

Total above-ground biomass

kg /ha

TEFF

Effect of temperature on rate of maintenance respiration

-

TIME

Simulated time

day

TMAXT

Table maximum temperature vs day number

-

TMINT

Table minimum temperature vs day number

-

TMPA

Average air temperature

Degree C

WLV

Weight of the green leaves

kg /ha

WLVD

Weight of the dead leaves

kg /ha

WLVI

Initial weight of the leaves

kg /ha

WLVT

Weight of the green plus dead leaves (output variable)

kg /ha

WRT

Weight of the dead leaves

kg /ha

WRTI

Initial weight of the roots

kg /ha

WSO

Weight of the storage organs

kg /ha

WST

Weight of the stems

kg /ha

WVEG

Weight of the vegetative parts (output variable)

kg /ha




SUCROS.CSM  (A Simple and Universal Crop Growth Simulator) Written in Continous System Modeling Program III (CSMP III) ____________________________________________  ReWritten in insightmaker.com for Soybean  and then Called SUCSOY.INS               Validasi
 model SUCSOY.INS dilakukan dengan cara me
SUCROS.CSM
(A Simple and Universal Crop Growth Simulator)
Written in Continous System Modeling Program III (CSMP III)
____________________________________________
ReWritten in insightmaker.com for Soybean
and then Called SUCSOY.INS




Validasi model SUCSOY.INS dilakukan dengan cara membandingkan hasil simulasi hasil Soybean (WSO) dengan model SUCSOY.CSM sebagai acuan, pada time step 2 hari memakai metode Integrasi RKSFX.
Input data iklim (Suhu maksimum, minimum dan Radiasi surya) memakai data Keulen, et. al.(1982), sementara data partisi tanaman kedelai memakai data Penning de Vries and van Laar (1982).

Hasil simulasi potensi hasil Soybean (WSO) pada tingkat Latitude (LAT) = -15, menunjukkan bahwa pada umur panen  420 hari diperoleh hasil masing-masing sebesar 2.150,14 kg/ha (SUCSOY.INS), dan 2.150,20 (SUCSOY.CSM);  dengan Koefisien determinasi (R2) = 1, Root Mean Square Error (RMSE) = 0,02.

Kesimpulannya SUCSOY.INS mempunyai prospek dikembangkan untuk simulasi potensi hasil kedelai beberapa varietas unggul kedelai di Indonesia; dengan mengganti input data partisi dan parameter tanaman Soybean dengan partisi dan parameter tanaman varietas unggul Kedelai di Indonesia.

Pustaka:

Keulen H. van, F.W.T. Penning de Vries and E.M. Drees. 1982. A summary model for crop growth.  p. 87-97. In Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds). Simulation Monographs, Pudoc, Wageningen.

Penning de Vries, F.W.T.  and  H.H. van Laar. 1982. Simulation of growth processes and the model BACROS. p. 114 - 135. In  Simulation of plant growth and crop production. F.W.T. Penning de Vries & H.H. van Laar (eds).  Simulation Monographs, Pudoc, Wageningen.





====================================
Laboratory of System Dynamic,
Postharvest and Mechanization Section,
Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
P.O.Box 66, Malang 65101
INDONESIA
====================================

Malang,  21 April 2017
SELAMAT HARI KARTINI
(Habis Gelap Terbitlah Terang)
***********************

Informasi lebih lanjut hubungi:
I K Tastra
iktastra@yahoo.com

===================================

Lampiran  1.   Keterangan peubah dan parameter model simulasi  SUCSOY.INS  (Penning de Vries and van Laar (1982)).


Name

Description

Unit

AMAX

CO2 assimilation rate of leaf at light saturation

kg(CO2)/ha(Leaf)/h

AVRAD

Actual daily radiation (400-700 nm)

J/m2/d

AVRADT

Table measured global radiation (cal/Cm2/d) vs day number

-

CVF

Conversion efficiency for growth of plant dry matter (DM)

kg(DM)/kg (CH2O)

CVFSO

Conversion efficiency for formation of storage organs

kg (DM)/kg (CH2O)

DAY

Number of day in the year from 1st January

day

DEC

Declination of sun with respect to the equator

Degree

DGAC

Daily gross CO2 assimilation -standard clear sky-

kg (CO2)/ha/d

DGAO

Daily gross CO2 assimilation -standard overcast sky-

kg (CO2)/ha/d

DL

Astronomical day length

h

DLE

Effective day length

h

DLP

Photoperiodic day length

h

DLV

Death rate of the leaves

kg/ ha/d

DRC

Photo synthetically active radiation -standard clear sky-

J/m2/d

DRO

Photo synthetically active radiation -standard overcast sky-

J/m2/d

DTGA

Actual daily gross co2 assimilation

kg (CO2)/ha/d

DVRDTB

Relation between rate of development and day length

-

DVRR

Rate of development in reproductive phase in relation to temperature

1/d

DVRRTB

Table of DVRR as function of temperature

-

DVRTTB

Relation between rate of development and temperature

-

DVRV

Rate of development in vegetative phase in relation to temperature

 

 

And day length

1/d

DVS

Development stage of the crop

Fraction

EFF

Efficiency of use of absorbed visible radiation for CO2 assimilation at low light level

kg(CO2)/J/ha/h m2 s

EFFE

EFF based on incident radiation

kg(CO2)/J/ha/h m2 s

FLV

Fraction of leaves in shoot biomass

-

FLVTB

Table FLV vs development stage

-

FOV

Fraction of time that sky is overcast

-

FSH

Fraction of shoot in total plant biomass

-

FSHTB

Table FSH vs development stage

-

FSO

Fraction of storage organs in shoot biomass

-

FSOTB

Table FSO vs development stage

-

FST

Fraction of stems in shoot biomass

-

FSTTB

Table FST vs development stage

-

GLV

Growth rate of the leaves

kg (DM)/ha/d

GPHOT

Daily gross CO2 assimilation

kg (CH2O)/ha/d

GRT

Growth rate of the roots

kg (DM)/ha/d

GSH

Growth rate of the shoot

kg (DM)/ha/d

GSO

Growth rate of the storage biomass

kg (DM)/ha/d

GST

Growth rate of the stems

kg (DM)/ha/d

GTW

Growth rate of total plant biomass

kg (DM)/ha/d

LAI

Leaf area index

m2/m2

LAT

Latitude

Degree

MAINT

Maintenance respiration of the vegetation

kg (CH2O)/ha/d

MAINTS

Maintenance respiration at standard temperature (25 C)

kg (CH2O)/ha/d

NWRT

Negative weight of roots (output variable)

kg (DM)/ha

PI

Circumference of a circle, divided by its diameter

-

O10

Increase in rate of maintenance processes per 10 degree C

-

RDN

Average level incoming photosynthetic active radiation

J/m2/S

RDR

Relative death rate of the leaves

1/d

RDRTB

Table RDR vs development stage

-

REFLC

Reflection coefficient of the canopy

Fraction

SLFA

Specific leaf area

ha(Leaf)/kg(Leaf)

TADRW

Total above-ground biomass

kg /ha

TEFF

Effect of temperature on rate of maintenance respiration

-

TIME

Simulated time

day

TMAXT

Table maximum temperature vs day number

-

TMINT

Table minimum temperature vs day number

-

TMPA

Average air temperature

Degree C

WLV

Weight of the green leaves

kg /ha

WLVD

Weight of the dead leaves

kg /ha

WLVI

Initial weight of the leaves

kg /ha

WLVT

Weight of the green plus dead leaves (output variable)

kg /ha

WRT

Weight of the dead leaves

kg /ha

WRTI

Initial weight of the roots

kg /ha

WSO

Weight of the storage organs

kg /ha

WST

Weight of the stems

kg /ha

WVEG

Weight of the vegetative parts (output variable)

kg /ha