This simulation makes the negative effects of starting work too soon visible. You can play around with the parameters.    Find the full story behind this simulation  here .      If you have questions or feedback get in touch via  @swilluda
This simulation makes the negative effects of starting work too soon visible. You can play around with the parameters.

Find the full story behind this simulation here

If you have questions or feedback get in touch via @swilluda
In this model we seek to show how Formula 1 can bring there Co2 emissions down to zero by 2030 (six years from now).
In this model we seek to show how Formula 1 can bring there Co2 emissions down to zero by 2030 (six years from now).
WIP Summary of the History of Pragmatism mostly based on Cheryl Misak's Books  insight  integrated with Cornelis de Waal's Introducing Pragmatism  insight    See also  Insight   Misak Peircean Truth and the end of Inquiry
WIP Summary of the History of Pragmatism mostly based on Cheryl Misak's Books insight integrated with Cornelis de Waal's Introducing Pragmatism insight   See also Insight  Misak Peircean Truth and the end of Inquiry
WIP integration of dynamic and complexity insights using rubik's cube metaphor from Pop Health Book  insight  folders,  and others linked in notes
WIP integration of dynamic and complexity insights using rubik's cube metaphor from Pop Health Book insight folders,  and others linked in notes
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 Modified from Sterman (2006)  article  and Gene Bellinger's Assumptions  IM-351  by Dr Rosemarie Sadsad UNSW See also  Complex Decision Technologies IM  and  IM-63975

Modified from Sterman (2006) article and Gene Bellinger's Assumptions IM-351 by Dr Rosemarie Sadsad UNSW See also Complex Decision Technologies IM and IM-63975

3 9 months ago
Improvement Science as one of the clusters of interacting methods for improving health services network design and delivery using  complex decision technologies IM-17952
Improvement Science as one of the clusters of interacting methods for improving health services network design and delivery using complex decision technologies IM-17952
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process. The simulation is described in the blog post " Starting late - The Superior Scheduling Approach  - How, despite being identical, one company delivers almost 10 times the
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process. The simulation is described in the blog post "Starting late - The Superior Scheduling Approach - How, despite being identical, one company delivers almost 10 times the value of its competitor using flow-oriented project initiation."

By adjusting the slider below you can observe the work process 
  • without any work in process limitations (WIP Limits), 
  • with process step specific WIP Limits* (work state WIP limits), 
  • with Kanban Token and Replenishment Token based on the Tameflow approach (a form of drum-buffer-rope) 
  • with Drum Buffer Rope** scheduling method. 
* Well know in (agile) Kanban
** Known in the physical world of factory production

The simulation and the comparison between the different scheduling approaches can be seen here -> https://youtu.be/xXvdVkxeMMQ

The "Tameflow approach" using Kanban Token and Replenishment Token as well as the Drum Buffer Rope method take the Constraint (the weakest link of the work process) into consideration when pulling in new work items into the delivery "system". 

Feel free to play around and recognize the different effects of work scheduling methods. 

If you have questions or feedback get in touch via twitter @swilluda

The work flow itself
Look at the simulation as if you would look on a kanban board

The simulation mimics a "typical" feature delivery process on portfolio level. 

From left to right you find the following ten process steps. 
  1. Ideas
  2. Selected ideas (waiting)
  3. Initiate and pitch
  4. Waiting for preparation
  5. Prepare
  6. Waiting for delivery
  7. Deliver
  8. Waiting for closure
  9. Close and communicate
  10. Closed
 IM-1175 with computable arguments, based on ideas from Micropublications  paper  about Claims, Evidence, Representations and Context Networks

IM-1175 with computable arguments, based on ideas from Micropublications paper about Claims, Evidence, Representations and Context Networks

10 months ago
Attempts to model in the social dynamics of  Pavilion host aquisition
Attempts to model in the social dynamics of  Pavilion host aquisition
Hoffman and Klein IEEE Intelligent systems 2017-18 series of articles on decision making and computing, including macrocognition 1  theoretical foundations  abstract  2  empirical foundations  abstract  3  causal landscape s abstract  4  deep n ets abstract   See also 2018 Gary Klein  podcast  and 
Hoffman and Klein IEEE Intelligent systems 2017-18 series of articles on decision making and computing, including macrocognition
causal landscapes abstract
deep nets abstract 
See also 2018 Gary Klein podcast and the process of explaining insight
 Documentation       The Insight shown demonstrates how demand and supply in a real estate market can affect pricing.      Demand, Supply and Price have been represented by stocks. Each has an inflow where it has an increase in stock, and a corresponding outflow where stock is decreased.      Linkin
Documentation

The Insight shown demonstrates how demand and supply in a real estate market can affect pricing. 

Demand, Supply and Price have been represented by stocks. Each has an inflow where it has an increase in stock, and a corresponding outflow where stock is decreased. 

Linking each stock and flow is a variable that changes that which it is linked to. These have been labelled appropriately. Each variable takes a decimal value and multiplies it with that it is linked to, such as the rate of demand affecting the price set as 0.001*Demand. This is to generate the loops required to show the rise and fall in price, demand and supply.

Adjustments can be made to the price, supply and demand stocks to simulate different scenarios. Price can be between 400 (400,000) and 1000 (1,000,000) in accordance to average housing prices. Demand and supply can be between 0 (0%) and 100 (100%), although having these set as realistic figures will demonstrate the simulation best. 

Each simulation can be focused on how either demand and price interact over time or supply and price. These are shown in different tabs. 

When the simulation is carried out, the way in which demand and supply rates affect pricing can be seen. Demand and supply are shown with price following shortly after with a slight delay, since changes in market behavior does not immediately affect prices of housing. 

It should also be noted that the lines that represent each stock do not directly reflect the prices of housing in reality. Prices do not fluctuate so rapidly from 400 to near 0 like they do on the graph, however these are just representations of the interactions between each stock in a marketplace.
The complex
systems model ‘Engagement vs Police Expenditure for Justice Reinvestment in
Bourke, NSW’ evaluates the effectiveness of allocating government funding to
either community engagement activities or law enforcement. In this model, it is
possible for the user to designate resources from a sca
The complex systems model ‘Engagement vs Police Expenditure for Justice Reinvestment in Bourke, NSW’ evaluates the effectiveness of allocating government funding to either community engagement activities or law enforcement. In this model, it is possible for the user to designate resources from a scale of 20-100 and to also modify the crime rate for both adults and youth. Below, there are detailed notes that describe the reasoning and assumptions that justify the logic applied to this model. Similar notes can be found when stocks, flows and variables is clicked under the field ‘notes’.

Portions

Government statistics from the Australian Bureau of Statistics (ABS) show that Bourke Shire Regional Council has approximately 3000 residents, made up of 65-63% adults and 35-37% youths.

Crime Rate

Police variable is in the denominator to create a hyperbolic trend. The aim was to achieve a lower crime rate if police expenditure was increased, thus also a higher crime rate if police expenditure was decreased. The figure in the numerator can be changed with the ‘maximum crime rate’ variable which represents the asymptotic crime rate percentage. Where police = 100 the selected crime rate is maximised.

Avoiding Gaol

Originally the formula incorporated the police as a variable, where the total amount of convicted crimes was subtracted from the total amount of crimes committed. However, the constant flow of crimes from repeat offender/a created an unrealistic fluctuation in the simulation. I settled for a constant avoidance rate of 25%. This assumes that an adult or youth committing a crime for the first time is just as likely to avoid conviction as a repeat offender.

Conviction

​It is difficult to predict in a mathematical model how many adults or youths are convicted of crimes they commit. I determined a reasonable guess of maximum 75% conviction rate when Police = 100. In this formula, decreasing police spending equates into decreased conviction rate, which is considered a realistic representation.

Released

​It is assumed that the average sentence for a youth is approximately 6 months detention. For an adult, it will be assumed that the average sentence is 12 months gaol. The discrepancy is due to a few basic considerations that include 1. Adults are more often involved in serious crime which carries a longer sentence 2. youths are convicted with shorter sentences for the same crime, in the hopes that they will have a higher probability of full rehabilitation. 

Engagement

​Rate of adult/youth engagement was estimated to be a linear relation. The maximum rate of engagement, assuming expenditure = 100, is set to 80%. This rate of engagement is a reasonable guess with consideration that there will also exist adults who refused to engage in the community and end up in crime, and adults or youth that refuse to engage in the community or crime. 

Boredom

Engagement Expenditure variable is in the denominator to create a hyperbolic trend. The aim was to achieve a lower boredom rate with a higher engagement expenditure, and thus a higher boredom rate with a lower engagement expenditure. The figure in the numerator of 25 represents the asymptotic boredom rate percentage, where if engagement expenditure = 100 the adult/youth boredom rate is maximised at 25%. 

 From  Werner Ulrich 's JORS Articles Operational research and critical systems thinking – an integrated perspective.  Part 1 : OR as applied systems thinking.  Journal of the Operational Research Societ y advance online publication (14 December 2011). and  Part 2  :OR as argumentative practice.  Se

From Werner Ulrich's JORS Articles Operational research and critical systems thinking – an integrated perspective. Part 1: OR as applied systems thinking. Journal of the Operational Research Society advance online publication (14 December 2011). and Part 2 :OR as argumentative practice.

See also insight on Boundary Critique

3 7 months ago
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.