Documentation       The Insight shown demonstrates how demand and supply in a real estate market can affect pricing.      Demand, Supply and Price have been represented by stocks. Each has an inflow where it has an increase in stock, and a corresponding outflow where stock is decreased.      Linkin
Documentation

The Insight shown demonstrates how demand and supply in a real estate market can affect pricing. 

Demand, Supply and Price have been represented by stocks. Each has an inflow where it has an increase in stock, and a corresponding outflow where stock is decreased. 

Linking each stock and flow is a variable that changes that which it is linked to. These have been labelled appropriately. Each variable takes a decimal value and multiplies it with that it is linked to, such as the rate of demand affecting the price set as 0.001*Demand. This is to generate the loops required to show the rise and fall in price, demand and supply.

Adjustments can be made to the price, supply and demand stocks to simulate different scenarios. Price can be between 400 (400,000) and 1000 (1,000,000) in accordance to average housing prices. Demand and supply can be between 0 (0%) and 100 (100%), although having these set as realistic figures will demonstrate the simulation best. 

Each simulation can be focused on how either demand and price interact over time or supply and price. These are shown in different tabs. 

When the simulation is carried out, the way in which demand and supply rates affect pricing can be seen. Demand and supply are shown with price following shortly after with a slight delay, since changes in market behavior does not immediately affect prices of housing. 

It should also be noted that the lines that represent each stock do not directly reflect the prices of housing in reality. Prices do not fluctuate so rapidly from 400 to near 0 like they do on the graph, however these are just representations of the interactions between each stock in a marketplace.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
Attempts to model in the social dynamics of returning players
Attempts to model in the social dynamics of returning players
3 6 months ago
A launchpad to tie together some ideas about Reality. See  wikipedia
A launchpad to tie together some ideas about Reality. See wikipedia
 This map is a WIP derived from the MIT D-memo 4641 presentation by Nelson Repenning 1996 and the paper "Nobody Ever Gets Credit for Fixing Problems that Never Happened: Creating and Sustaining Process Improvement" by Nelson P. Repenning and John D Sterman.  http://bit.ly/jCXGKL  See  Insight 9781  

This map is a WIP derived from the MIT D-memo 4641 presentation by Nelson Repenning 1996 and the paper "Nobody Ever Gets Credit for Fixing Problems that Never Happened: Creating and Sustaining Process Improvement" by Nelson P. Repenning and John D Sterman. http://bit.ly/jCXGKL See Insight 9781 for a simulation of this model. This map adds additional features mentioned in the article to the bare bones simulation in IM-9781

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

WIP integration of dynamic and complexity insights using rubik's cube metaphor from Pop Health Book  insight  folders,  and others linked in notes
WIP integration of dynamic and complexity insights using rubik's cube metaphor from Pop Health Book insight folders,  and others linked in notes
A combination of qualitative and quantitative methods for implementing a systems approach, including virtual intervention experiments using computer simulation models. See also  Complex Decision Technologies IM  Interventions and leverage points added in  IM-1400  (complex!) 
A combination of qualitative and quantitative methods for implementing a systems approach, including virtual intervention experiments using computer simulation models. See also Complex Decision Technologies IM
Interventions and leverage points added in IM-1400 (complex!) 
 Clone of  IM-806  modified to integrate AnyLogic Real world, Model World with Van de Ven Engaged Scholarship and Land Use Modelling approaches. See also  Complex Decision Technologies IM

Clone of IM-806 modified to integrate AnyLogic Real world, Model World with Van de Ven Engaged Scholarship and Land Use Modelling approaches. See also Complex Decision Technologies IM

9 months ago
Summary mostly of Cheryl Misak's 2004  Book  Truth and the End of Inquiry: A Peircean Account of Truth See also broader history of  Pragmatism insight , mostly  from Cheryl Misak's other works and reviews
Summary mostly of Cheryl Misak's 2004 Book Truth and the End of Inquiry: A Peircean Account of Truth
See also broader history of Pragmatism insight, mostly  from Cheryl Misak's other works and reviews

10 months ago
2f. [thought question] Is it possible for r maxrmax to be positive and yet for the total regional abundance to exhibit a persistent declining trend? Explain your reasoning, using at least one biologically realistic example. You can use the agent-based metapopulation model in InsightMaker to help tes
2f. [thought question] Is it possible for r maxrmax to be positive and yet for the total regional abundance to exhibit a persistent declining trend? Explain your reasoning, using at least one biologically realistic example. You can use the agent-based metapopulation model in InsightMaker to help test your ideas, but this is not required.
 IM-1175 with computable arguments, based on ideas from Micropublications  paper  about Claims, Evidence, Representations and Context Networks

IM-1175 with computable arguments, based on ideas from Micropublications paper about Claims, Evidence, Representations and Context Networks

10 months ago
Improvement Science as one of the clusters of interacting methods for improving health services network design and delivery using  complex decision technologies IM-17952
Improvement Science as one of the clusters of interacting methods for improving health services network design and delivery using complex decision technologies IM-17952
Attempts to model in the social dynamics of  Pavilion host aquisition
Attempts to model in the social dynamics of  Pavilion host aquisition
  About
the Model  

 This
model is designed to simulate the youth population in Bourke, specifically
focusing on the number of criminals and incarcerated dependent on a few key
variables. 

 Within the model, a young person living in Bourke can be classified as being in any of five states:  Young C

About the Model

This model is designed to simulate the youth population in Bourke, specifically focusing on the number of criminals and incarcerated dependent on a few key variables.

Within the model, a young person living in Bourke can be classified as being in any of five states:

Young Community Member: The portion of the youth population that is not committing crime and will not commit crime in the future. Essentially the well behaved youths. A percentage of these youths will become alienated and at risk.

Alienated and At Risk Youths: The youths of Bourke that are on the path of becoming criminals, this could be caused by disruptive home lives, alcohol and drug problems, and peer pressure, among other things.

Criminal: The youths of Bourke who are committing crimes. Of these criminals a percentage will be caught and convicted and become imprisoned, while the remainder will either go back to being at risk and commit more crimes, or change their behaviour and go back to being a behaving community member.

Imprisoned: The youths of Bourke who are currently serving time in a juvenile detention centre. Half of the imprisoned are released every period at a delay of 6 months.

Released: Those youths that have been released from a detention centre. All released youths either rehabilitate and go back to being a community member or are likely to re-offend and become an alienated and at risk youth.

The variables used in the model are:

Police- This determines the police expenditure in Bourke, which relates to the number of police officers, the investment in surveillance methods and investment in criminal investigations. The level of expenditure effects how many youths are becoming criminals and how many are being caught. An increase in police expenditure causes an increase in imprisoned youths and a decrease in criminals.

Community Engagement Programs- The level of investment in community engagement programs that are targeted to keep youths in Bourke from becoming criminals. The programs include sporting facilities and clubs, educational seminars, mentoring programs and driving lessons. Increasing the expenditure in community engagement programs causes more young community members and less criminals and at risk youths.

Community Service Programs- The level of investment in community service programs that are provided for youths released from juvenile detention to help them rehabilitate and reintegrate back into the community. An increase in community service expenditure leads to more released prisoners going back into the community, rather than continuing to be at risk. Since community service programs are giving back to the community, the model also shows that an increase in expenditure causes a decrease in the amount of at risk youths.

All three of these variables are adjustable. The number of variables has been kept at three in order to ensure the simulation runs smoothly at all times without complicated outputs, limitations have also been set on how the variables can be adjusted as the simulation does not act the same out of these boundaries.

Key Assumptions:

The model does not account for the youths’ memory or learning.

There is no differentiation in the type of criminals and the sentences they serve. Realistically, not all crimes would justify juvenile detention and some crimes would actually have a longer than six-month sentence.

The constants within in the calculations of the model have been chosen arbitrarily and should be adjusted based on actual Bourke population data if this model were to be a realistic representation of Bourke’s population.

The model assumes that there are no other factors affecting youth crime and imprisonment in Bourke.

There are 1500 youths in Bourke. At the beginning of the simulation:

Young Community Member = 700

Alienated and At Risk Youth = 300

Criminal = 300

Imprisoned = 200

Noteworthy observations:

Raising Police expenditure has a very minimal effect on the number of at risk youths. This can be clearly seen by raising Police expenditure to the maximum of twenty and leaving the other two variables at a minimum. The number of Alienated and at Risk Youths is significantly higher than the other states.

Leaving Police expenditure at the minimum of one and increasing community development programs and community service programs to their maximum values shows that, in this model, crime can be decreased to nearly zero through community initiatives alone.

Leaving all the variables at the minimum position results in a relatively large amount of crime, a very low amount of imprisoned youth, and a very large proportion of the population alienated and at risk.

An ideal and more realistic simulation can be found by using the settings: Police = 12, Community Engagement Programs = 14, Community Service Programs = 10. This results in a large proportion of the population being young community members and relatively low amounts of criminals and imprisoned.



 Allison Zembrodt's Model    This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data f
Allison Zembrodt's Model

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

equations I used in kill rate :

power model - 12*0.1251361120909615*([Moose]/[Wolves])^.44491970277839954*[Wolves]


Kill rate sqrt = 12*(0.0933207+.0873463*([Moose]/[Wolves])^.5)*[Wolves]


Holling Type III - ((0.986198*([Moose]/[Wolves])^2)/ (601.468 +([Moose]/[Wolves])^2))*[Wolves]*12


linear - 12*[Wolves]*(.400271+.00560299([Moose]/[Wolves]))


This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W