Insight diagram
Simulation d'un MRU d'un corps qui avance avec une régulation de vitesse réaliste.
serie 08a ex4 Une regulation de vitesse plus realiste V1
Insight diagram
Attempts to model in the social dynamics of  Pavilion host aquisition
Pavilion Model
Insight diagram
Summary of  Ch 22 of Mitchell Wray and Watts Textbook see IM-164967 for book overview
Fiscal Space and Fiscal Sustainability
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

A decent match to the data is made with
Wolf Death Rate = 0.15
Wolf Birth Rate Factor = 0.0203
Moose Death Rate Factor = 1.08
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is MBR*M*(1-M/K)
Moose death flow is MDRF*Sqrt(M*W)
Wolf birth flow is WBRF*Sqrt(M*W)
Wolf death flow is WDR*W

A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
WIP integration of dynamic and complexity insights using rubik's cube metaphor from Pop Health Book insight folders,  and others linked in notes
Beyond connecting the dots
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
Parker Realistic Isle Royale: Predator Prey Interactions
Insight diagram

About the Model

This model is designed to simulate the youth population in Bourke, specifically focusing on the number of criminals and incarcerated dependent on a few key variables.

Within the model, a young person living in Bourke can be classified as being in any of five states:

Young Community Member: The portion of the youth population that is not committing crime and will not commit crime in the future. Essentially the well behaved youths. A percentage of these youths will become alienated and at risk.

Alienated and At Risk Youths: The youths of Bourke that are on the path of becoming criminals, this could be caused by disruptive home lives, alcohol and drug problems, and peer pressure, among other things.

Criminal: The youths of Bourke who are committing crimes. Of these criminals a percentage will be caught and convicted and become imprisoned, while the remainder will either go back to being at risk and commit more crimes, or change their behaviour and go back to being a behaving community member.

Imprisoned: The youths of Bourke who are currently serving time in a juvenile detention centre. Half of the imprisoned are released every period at a delay of 6 months.

Released: Those youths that have been released from a detention centre. All released youths either rehabilitate and go back to being a community member or are likely to re-offend and become an alienated and at risk youth.

The variables used in the model are:

Police- This determines the police expenditure in Bourke, which relates to the number of police officers, the investment in surveillance methods and investment in criminal investigations. The level of expenditure effects how many youths are becoming criminals and how many are being caught. An increase in police expenditure causes an increase in imprisoned youths and a decrease in criminals.

Community Engagement Programs- The level of investment in community engagement programs that are targeted to keep youths in Bourke from becoming criminals. The programs include sporting facilities and clubs, educational seminars, mentoring programs and driving lessons. Increasing the expenditure in community engagement programs causes more young community members and less criminals and at risk youths.

Community Service Programs- The level of investment in community service programs that are provided for youths released from juvenile detention to help them rehabilitate and reintegrate back into the community. An increase in community service expenditure leads to more released prisoners going back into the community, rather than continuing to be at risk. Since community service programs are giving back to the community, the model also shows that an increase in expenditure causes a decrease in the amount of at risk youths.

All three of these variables are adjustable. The number of variables has been kept at three in order to ensure the simulation runs smoothly at all times without complicated outputs, limitations have also been set on how the variables can be adjusted as the simulation does not act the same out of these boundaries.

Key Assumptions:

The model does not account for the youths’ memory or learning.

There is no differentiation in the type of criminals and the sentences they serve. Realistically, not all crimes would justify juvenile detention and some crimes would actually have a longer than six-month sentence.

The constants within in the calculations of the model have been chosen arbitrarily and should be adjusted based on actual Bourke population data if this model were to be a realistic representation of Bourke’s population.

The model assumes that there are no other factors affecting youth crime and imprisonment in Bourke.

There are 1500 youths in Bourke. At the beginning of the simulation:

Young Community Member = 700

Alienated and At Risk Youth = 300

Criminal = 300

Imprisoned = 200

Noteworthy observations:

Raising Police expenditure has a very minimal effect on the number of at risk youths. This can be clearly seen by raising Police expenditure to the maximum of twenty and leaving the other two variables at a minimum. The number of Alienated and at Risk Youths is significantly higher than the other states.

Leaving Police expenditure at the minimum of one and increasing community development programs and community service programs to their maximum values shows that, in this model, crime can be decreased to nearly zero through community initiatives alone.

Leaving all the variables at the minimum position results in a relatively large amount of crime, a very low amount of imprisoned youth, and a very large proportion of the population alienated and at risk.

An ideal and more realistic simulation can be found by using the settings: Police = 12, Community Engagement Programs = 14, Community Service Programs = 10. This results in a large proportion of the population being young community members and relatively low amounts of criminals and imprisoned.



Bourke Justice Reinvestment - Nicholas Hayward 44553625
Insight diagram
Final Group Formula 1 Model
Insight diagram
EK map - Motivation
Insight diagram
Realistic_WolvesMoose
Insight diagram
Stephen P Dunn 2010 Book summary including Technostructure MMT PCT critical realist and managing perceptions links
The Economics of JK Galbraith
Insight diagram
A combination of qualitative and quantitative methods for implementing a systems approach, including virtual intervention experiments using computer simulation models. See also Complex Decision Technologies IM
Interventions and leverage points added in IM-1400 (complex!) 
Systems Methods
Insight diagram
based on Kolb 2005 article and 1984 publication on Experiential Learning and Pepper World Hypotheses via John Barton. See also The Art of the State IM  and Social Relations Worldviews IM  and The Educated Mind IM
The Structure of Learning and Knowledge
2 months ago
Insight diagram

MODEL EXPLANATION:

This model simulates possible crime patterns among the youth population of Bourke, where levels of alienation, policing and community engagement expenditure can be manipulated. Here the youth in Bourke have a minimum percentage of interest to participate in community activities in which the government aims to improve their lifestyle and therefore reduce the rate of criminal activity. ASSUMPTIONS:There are 1500 youths of Bourke in the population susceptible to committing crime and simulations of criminal tendencies are only based the factors presented, no external influences.
VARIABLES:“Alienation” includes any factors that can increase the likelihood of youths to commit crime such as exposure to domestic violence, household income, education level, and family background‘Community engagement Expenditure’ is the total monies budgeted into community activities to develop youths in and out of Juvenile detention‘Policing’ is the amount of police placed onto patrol in the town of Bourke to reinforce safety and that the law is abided by. STOCKS:Conviction rate is set to 60%A juvenile detention sentence for convicted criminals is set to 3 monthsThe top 30% of the most severe offenders are sent to rehabilitation for 3 months, to which they return to Bourke, assumingly in a better state and less likely to repeat a petty crimeCommunity activities are set to last for 3 months to align with the seasons: these could be sporting clubs or youth groupsCommunity participants have a 20% chance of being disengaged as it may not align with their interestsInvestments into policing are felt immediately& community engagement expenditure has a delay of 3 months
INTERESTING FINDS:1.    Alienation set to max (0.2), policing and community engagement set to minimum shows a simulation whereby all criminals are in town rather than being expedited and placed into juvenile detention, even after a base value of 200 youths placed into juvenile detention – this shows that budget is required to control the overwhelming number of criminal youths as they overrun Bourke2.    Set community activity to 0.01, policing to max & Alienation to max. A lack of community activity can produce high disengagement amongst youths regardless of police enforcement to the town of Bourke that has a high criminal rate. Juvenile detention only lasts for so long and not all youths can be rehabilitated, so they are released back into Bourke with chances of re-committing crime. 3.    Alienation plays a major role in affecting youths to consider committing crime. To keep criminal activity to a minimum, ideally the maximum rates of budget in policing and community engagement within youths highly at risk of committing crime should be pushed. Realistically, budget is a sensitive case within a small town and may not be practical. 4. Set policing to 0.25, community engagement to 0.2 & alienation to 0.04. Moderate expenditure to community activities and policing can produce high engagement rates and improved youths in the town of Bourke.



MGT563 (11605457) - Crime, Policing & Community Development in Bourke
Insight diagram
A simple three way predator prey model (Polar bears; Seals; Fish) including change in fish death rates at a set time point due to an external factor (e.g. human fishing).

Coefficients assigned to make model work rather than being based on any evidence.  

Model created for descriptive basis; not realistic modelling.


PredPreyTest
Insight diagram
Summary of 2017 IEEE Computer graphics article (abstract) which could be applied to almost any chronic persistent health or social problem
Building useful theory on solid foundations
3 months ago
Insight diagram
In this model we seek to show how Formula 1 can bring there Co2 emissions down to zero by 2030 (six years from now).
Formula 1 Model
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
Day 22: More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
Realistic Teaching Tool
Insight diagram
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
  1. http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA.nb
  2. https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death
Insight diagram

Clone of IM-806 modified to integrate AnyLogic Real world, Model World with Van de Ven Engaged Scholarship and Land Use Modelling approaches. See also Complex Decision Technologies IM

Real World and Model World
11 months ago
Insight diagram
MAST 610_Homework 1: More Realistic Covid Model
Insight diagram

IM-1175 with computable arguments, based on ideas from Micropublications paper about Claims, Evidence, Representations and Context Networks

Toulmin's Argument Model and Micropublications
12 months ago