IM-1175 with computable arguments, based on ideas from Micropublications  paper  about Claims, Evidence, Representations and Context Networks

IM-1175 with computable arguments, based on ideas from Micropublications paper about Claims, Evidence, Representations and Context Networks

10 months ago
This simulation makes the negative effects of starting work too soon visible. You can play around with the parameters.    Find the full story behind this simulation  here .      If you have questions or feedback get in touch via  @swilluda
This simulation makes the negative effects of starting work too soon visible. You can play around with the parameters.

Find the full story behind this simulation here

If you have questions or feedback get in touch via @swilluda
 Clone of  IM-806  modified to integrate AnyLogic Real world, Model World with Van de Ven Engaged Scholarship and Land Use Modelling approaches. See also  Complex Decision Technologies IM

Clone of IM-806 modified to integrate AnyLogic Real world, Model World with Van de Ven Engaged Scholarship and Land Use Modelling approaches. See also Complex Decision Technologies IM

9 months ago
Stephen P Dunn 2010 Book summary including Technostructure MMT PCT critical realist and managing perceptions links
Stephen P Dunn 2010 Book summary including Technostructure MMT PCT critical realist and managing perceptions links
2f. [thought question] Is it possible for r maxrmax to be positive and yet for the total regional abundance to exhibit a persistent declining trend? Explain your reasoning, using at least one biologically realistic example. You can use the agent-based metapopulation model in InsightMaker to help tes
2f. [thought question] Is it possible for r maxrmax to be positive and yet for the total regional abundance to exhibit a persistent declining trend? Explain your reasoning, using at least one biologically realistic example. You can use the agent-based metapopulation model in InsightMaker to help test your ideas, but this is not required.
This model simulates the tradeoff between the total costs and total benefits of using AI. The model shows the investment rate in comparison to the effectiveness and efficiency rate of the AI and we can visualize this relationship with our graph to see the cost and benefits of AI.
This model simulates the tradeoff between the total costs and total benefits of using AI. The model shows the investment rate in comparison to the effectiveness and efficiency rate of the AI and we can visualize this relationship with our graph to see the cost and benefits of AI.
Launchpad for insights related to Systems and Complexity in general and Systems Science for Health in particular. Current key participants are public health researchers, health service managers, clinicians, and mental health policy makers and practitioners
Launchpad for insights related to Systems and Complexity in general and Systems Science for Health in particular. Current key participants are public health researchers, health service managers, clinicians, and mental health policy makers and practitioners
A simple three way predator prey model (Polar bears; Seals; Fish) including change in fish death rates at a set time point due to an external factor (e.g. human fishing).    Coefficients assigned to make model work rather than being based on any evidence.       Model created for descriptive basis; n
A simple three way predator prey model (Polar bears; Seals; Fish) including change in fish death rates at a set time point due to an external factor (e.g. human fishing).

Coefficients assigned to make model work rather than being based on any evidence.  

Model created for descriptive basis; not realistic modelling.


 An overview of Thomas A Goudge's Book on The Thought of CS Peirce Dover NY 1950 and Thomas Knight's Book Charles Peirce NY 1965. See also  causality insight

An overview of Thomas A Goudge's Book on The Thought of CS Peirce Dover NY 1950 and Thomas Knight's Book Charles Peirce NY 1965. See also causality insight

 Modified from Sterman (2006)  article  and Gene Bellinger's Assumptions  IM-351  by Dr Rosemarie Sadsad UNSW See also  Complex Decision Technologies IM  and  IM-63975

Modified from Sterman (2006) article and Gene Bellinger's Assumptions IM-351 by Dr Rosemarie Sadsad UNSW See also Complex Decision Technologies IM and IM-63975

3 9 months ago
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process.   By adjusting the sliders below you can    observe the work process  without  any work in process limitations ( WIP Limits ),   with process step specific WIP Limits* (
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process.

By adjusting the sliders below you can 
  • observe the work process without any work in process limitations (WIP Limits), 
  • with process step specific WIP Limits* (work state WIP limits), 
  • or you may want to see the impact of the Tameflow approach with Kanban Token and Replenishment Token 
  • or see the impact of the Drum-Buffer-Rope** method. 
* Well know in (agile) Kanban
** Known in the physical world of factory production

The "Tameflow approach" using Kanban Token and Replenishment Token as well as the Drum-Buffer-Rope method take oth the Constraint (the weakest link of the work process) into consideration when pulling in new work items into the delivery "system". 

You can also simulate the effects of PUSH instead of PULL. 

Feel free to play around and recognize the different effects of work scheduling methods. 

If you have questions or feedback get in touch via twitter @swilluda

The work flow itself
Look at the simulation as if you would look on a kanban board

The simulation mimics a "typical" software delivery process. 

From left to right you find the following ten process steps. 
  1. Input Queue (Backlog)
  2. Selected for work (waiting for analysis or work break down)
  3. Analyse, break down and understand
  4. Waiting for development
  5. In development
  6. Waiting for review
  7. In review
  8. Waiting for deployment
  9. In deployment
  10. Done
Hoffman and Klein IEEE Intelligent systems 2017-18 series of articles on decision making and computing, including macrocognition 1  theoretical foundations  abstract  2  empirical foundations  abstract  3  causal landscape s abstract  4  deep n ets abstract   See also 2018 Gary Klein  podcast  and 
Hoffman and Klein IEEE Intelligent systems 2017-18 series of articles on decision making and computing, including macrocognition
causal landscapes abstract
deep nets abstract 
See also 2018 Gary Klein podcast and the process of explaining insight
Improvement Science as one of the clusters of interacting methods for improving health services network design and delivery using  complex decision technologies IM-17952
Improvement Science as one of the clusters of interacting methods for improving health services network design and delivery using complex decision technologies IM-17952