​Lab 2 for Physics PHY201  Simulating a spherical projectile released with an initial velocity of 0 m/s that experiences both forces of gravity and air drag.
​Lab 2 for Physics PHY201
Simulating a spherical projectile released with an initial velocity of 0 m/s that experiences both forces of gravity and air drag.
  ​S-Curve + Delay for Bell Curve Showing Erlang Distribution      Generation of Bell Curve from Initial Market through Delay in Pickup of Customers     This provides the beginning of an Erlang distribution model      The  Erlang distribution  is a two parameter family of continuous  probability dis
​S-Curve + Delay for Bell Curve Showing Erlang Distribution

Generation of Bell Curve from Initial Market through Delay in Pickup of Customers

This provides the beginning of an Erlang distribution model

The Erlang distribution is a two parameter family of continuous probability distributions with support . The two parameters are:

  • a positive integer 'shape' 
  • a positive real 'rate' ; sometimes the scale , the inverse of the rate is used.

A simple model of radioactive decay as a typical example of exponential decay.
A simple model of radioactive decay as a typical example of exponential decay.
 Schwingkreis mit Generator: Erzwungene Schwingung   UG = UL + UC + UR
Schwingkreis mit Generator: Erzwungene Schwingung
UG = UL + UC + UR
 
  Uma roda-gigante
de raio 14 m gira em torno de um eixo horizontal. Um passageiro sentado em uma
cadeira, move-se com velocidade linear v=7 m/s. Determine:   a) a velocidade angular do
movimento.  b) gráfico XY do movimento da cadeira.  c) em quanto tempo o
passageiro executa uma volta completa.

Uma roda-gigante de raio 14 m gira em torno de um eixo horizontal. Um passageiro sentado em uma cadeira, move-se com velocidade linear v=7 m/s. Determine:

a) a velocidade angular do movimento.

b) gráfico XY do movimento da cadeira.

c) em quanto tempo o passageiro executa uma volta completa.

Clique aqui para ver uma descrição do que é Movimento Circular.

 Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example  IM-9010

Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example IM-9010

OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunb
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

 An airplane has a constant acceleration from its turbins and opposed to it air friction
An airplane has a constant acceleration from its turbins and opposed to it air friction
A Fourier series is a way to expand a periodic function in terms of sines and cosines. The Fourier series is named after Joseph Fourier, who introduced the series as he solved for a mathematical way to describe how heat transfers in a metal plate.  The GIFs above show the 8-term Fourier series appro
A Fourier series is a way to expand a periodic function in terms of sines and cosines. The Fourier series is named after Joseph Fourier, who introduced the series as he solved for a mathematical way to describe how heat transfers in a metal plate.

The GIFs above show the 8-term Fourier series approximations of the square wave and the sawtooth wave.

Thanks to  https://insightmaker.com/insight/1830/Rossler-Chaotic-Attractor for this example of chaos, and the  transition  to chaos. "After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic
Thanks to
https://insightmaker.com/insight/1830/Rossler-Chaotic-Attractor
for this example of chaos, and the transition to chaos. "After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic behavior."

We're looking into environmental applications in our course, and how dramatically dynamics can change, based on a small change in parameters. Climate change "suffers" this chaotic behavior, we fear, and we're going to be "taken by surprise" when the dynamics changes on us suddenly....

Andy Long
 ​Lab 4 for Physics PHY201  Simulating a spherical projectile approaching the speed of light.
​Lab 4 for Physics PHY201
Simulating a spherical projectile approaching the speed of light.
Flugbahn eines Federballs - Simulation und Messung (Tracker Video Analysis and Modeling Tool)
Flugbahn eines Federballs - Simulation und Messung (Tracker Video Analysis and Modeling Tool)
Depending on the pressure, water flows out of a vessel.
Depending on the pressure, water flows out of a vessel.
 ​Força de arrasto linear referências:      CREF - Velocidade das gotas de chuva. 27 de abril, 2020. É verdade que as gotas de chuva sempre caem com a mesma velocidade devido a gravidade?  Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/   https://www.if.ufrgs.br/novocref/?co
​Força de arrasto linear referências:

CREF - Velocidade das gotas de chuva. 27 de abril, 2020. É verdade que as gotas de chuva sempre caem com a mesma velocidade devido a gravidade? Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/

CREF - Velocidade de pedras de granizo no solo. 22 de outubro, 2015. Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/

 Silveira, F. (2015). Velocidade das pedras de granizo Hailstone speed. https://doi.org/10.13140/RG.2.2.33619.94245

https://www.researchgate.net/publication/339536656_Velocidade_das_pedras_de_granizo_Hailstone_speed


Aula 10 - Velocidade Terminal 

Aerodinâmica da Bola de Futebol: da Copa de 70 à Jabulani Carlos Eduardo Aguiar Programa de Pós-Graduação em Ensino de Física Instituto de Física - UFRJ

Número de Reynolds


Aula 5.2 - Origem física do arrasto linear e quadrático: o número de Reynolds. Mecânica Clássica UFF Prof. Jorge de Sá Martins 

Viscosidade, turbulência e tensão superficial - IF UFRJ
 
Sugestões de Modelagem (Leonardo):

Revista Brasileira de Ensino de Física, vol. 41, nº 3 (2019) É seguro atirar para cima? Uma analise da letalidade de projéteis subsônicos. Saulo Luis Lima da Silva, Herman Fialho Fumiã.

FRENAGEM DE UM PROJÉTIL EM UM MEIO FLUIDO: “QUAL SERIA A DISTÂNCIA, DENTRO DA ÁGUA, PERCORRIDA POR UM PROJÉTIL CALIBRE .50 COM MASSA DE 50 G E VELOCIDADE DE 850 M/S?”  Fernando Lang da Silveira Instituto de Física – UFRGS 


 ​Lab 2 for Physics PHY201  Simulating a spherical projectile released with an initial velocity of 0 m/s that experiences both forces of gravity and air drag.
​Lab 2 for Physics PHY201
Simulating a spherical projectile released with an initial velocity of 0 m/s that experiences both forces of gravity and air drag.
Detalhes sobre o modelo disponíveis em artigo intitulado: A contrastação
 empírica de um modelo teórico sobre o movimento de corpos com massa 
variável como uma forma de promover discussões epistemológicas em aulas 
de Física​ Autores: Leonardo Albuquerque Heidemann (IF/UFRGS); Ricardo Robinson Camp
Detalhes sobre o modelo disponíveis em artigo intitulado: A contrastação empírica de um modelo teórico sobre o movimento de corpos com massa variável como uma forma de promover discussões epistemológicas em aulas de Física​
Autores: Leonardo Albuquerque Heidemann (IF/UFRGS); Ricardo Robinson Campomanes Santana (UFMT/Sinop); Ives Solano Araujo (IF/UFRGS).
Simulation der Umlaufbahn der Erde um die Sonne
Simulation der Umlaufbahn der Erde um die Sonne
How Newton's inverse square law of gravity produces the elliptical orbits of the planets
How Newton's inverse square law of gravity produces the elliptical orbits of the planets
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System. Zusätzlich wird al
In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System.
Zusätzlich wird als Gedankenexperiment die Reibungskraft die durch ein hypothetisches umgebenes Medium entsteht eingeführt und die Auswirkung auf die Chaotizität gezeigt.
 
  Um ponto
material percorre uma trajetória circular de raio R = 20m com movimento uniformemente variado e
aceleração escalar a = 5m/s². Sabendo-se que no instante
t = 0 sua velocidade escalar é nula, determine no instante t = 2s os módulos da:   a) Velocidade vetorial;  b) Aceleração tangencial;

Um ponto material percorre uma trajetória circular de raio R = 20m com movimento uniformemente variado e aceleração escalar a = 5m/s². Sabendo-se que no instante t = 0 sua velocidade escalar é nula, determine no instante t = 2s os módulos da:

a) Velocidade vetorial;

b) Aceleração tangencial;

c) Aceleração centrípeta;

d) Aceleração vetorial.

Fonte: (RAMALHO,NICOLAU E TOLEDO; Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Movimento Vertical no Vácuo.