The model is designed to provide a general understanding of the wear and tear on roads or a community's circulation system as a result of vehicle traffic generated by development within and outside of a community. It is not based on realistic assumptions regarding those impacts, it simply attempts t
The model is designed to provide a general understanding of the wear and tear on roads or a community's circulation system as a result of vehicle traffic generated by development within and outside of a community. It is not based on realistic assumptions regarding those impacts, it simply attempts to convey the flow of influence.

The imaginary city has a set area of roads measured in linear yards (width of roads is ignored) and an assumed number of vehicles on those roads set at 30,000 (per day). With those assumptions the wear and tear requiring repair is .02 or 2% Vehicle wear based on the 30,000 per year. There is also a calculated replacement cost of an additional 3% plus through vehicle wear or 5% per year.  An increase in vehicles increases this vehicle wear impact exponentially. The model assumes that there will not be less than 30,000 vehicles.

Expenditures for repair or replacement are set to balance out on an as needed based on 30,000 vehicles. An minimum additional 50 cars from external sources is then assumed. Adding New Homes and/or New Businesses places an even greater burden on the circulation system. 

The model does not consider additional funding. This will be added as a political factor but would need to consider the possibility of decreasing funding for other purposes.

Future additions to the model will include an inflation factor. Unfunded road work will get increasingly more expensive over time. Also a diminished revenue factor. A lack of capacity of the community's roads could likely result in a diminishment of the community's business sector thus reducing sales and property taxes and municipal revenue to expend on the roads. 
 Documentation       The Insight shown demonstrates how demand and supply in a real estate market can affect pricing.      Demand, Supply and Price have been represented by stocks. Each has an inflow where it has an increase in stock, and a corresponding outflow where stock is decreased.      Linkin
Documentation

The Insight shown demonstrates how demand and supply in a real estate market can affect pricing. 

Demand, Supply and Price have been represented by stocks. Each has an inflow where it has an increase in stock, and a corresponding outflow where stock is decreased. 

Linking each stock and flow is a variable that changes that which it is linked to. These have been labelled appropriately. Each variable takes a decimal value and multiplies it with that it is linked to, such as the rate of demand affecting the price set as 0.001*Demand. This is to generate the loops required to show the rise and fall in price, demand and supply.

Adjustments can be made to the price, supply and demand stocks to simulate different scenarios. Price can be between 400 (400,000) and 1000 (1,000,000) in accordance to average housing prices. Demand and supply can be between 0 (0%) and 100 (100%), although having these set as realistic figures will demonstrate the simulation best. 

Each simulation can be focused on how either demand and price interact over time or supply and price. These are shown in different tabs. 

When the simulation is carried out, the way in which demand and supply rates affect pricing can be seen. Demand and supply are shown with price following shortly after with a slight delay, since changes in market behavior does not immediately affect prices of housing. 

It should also be noted that the lines that represent each stock do not directly reflect the prices of housing in reality. Prices do not fluctuate so rapidly from 400 to near 0 like they do on the graph, however these are just representations of the interactions between each stock in a marketplace.
Based on the Market and Price simulation model in System Zoo 3, Z504. In this model the profit calculations were not realistic. They were based on the per unit profit, which does not take items not sold into account. Also the model was not very clear on profit since it was included in the total prod
Based on the Market and Price simulation model in System Zoo 3, Z504. In this model the profit calculations were not realistic. They were based on the per unit profit, which does not take items not sold into account. Also the model was not very clear on profit since it was included in the total production costs and consequently in the unit costs and subsequently profit was calculated by subtracting unit costs of the market price. Thus profit had a double layer which does not make the model better accessible. I have tried to remedy both in this simplified version.
9 months ago