Your browser (Internet Explorer 8 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.

X

Menu

Biological Systems

Clone of 0409: Daisyworld

Hoepfl
Darwinian Daisyworld model from and Watson & Lovelock (1983), Robertson & Robinson (1998) and Lenton & Lovelock (2001).

Units of time are 40 Myr, giving R&R's span of 10 Gyr.

This model offers many opportunities for modification. Maybe the Black and White populations can mutate into each other? The role of q as a measure of segregation of the B and W populations is interesting, and while this model uses purely stigmergic communication between species, direct interaction would also be possible.

HSWT BPI Biological Systems

  • 2 years 1 month ago

Clone of Clone of 0409: Daisyworld

Cuong Quang
Darwinian Daisyworld model from and Watson & Lovelock (1983), Robertson & Robinson (1998) and Lenton & Lovelock (2001).

Units of time are 40 Myr, giving R&R's span of 10 Gyr.

This model offers many opportunities for modification. Maybe the Black and White populations can mutate into each other? The role of q as a measure of segregation of the B and W populations is interesting, and while this model uses purely stigmergic communication between species, direct interaction would also be possible.

HSWT BPI Biological Systems

  • 2 years 2 weeks ago

Clone of The Best Daisyworld 3.0

Elena Holm
Darwinian Daisyworld model from and Watson & Lovelock (1983), Robertson & Robinson (1998) and Lenton & Lovelock (2001).

Units of time are 40 Myr, giving R&R's span of 10 Gyr.

This model offers many opportunities for modification. Maybe the Black and White populations can mutate into each other? The role of q as a measure of segregation of the B and W populations is interesting, and while this model uses purely stigmergic communication between species, direct interaction would also be possible.

HSWT BPI Biological Systems

  • 2 years 6 days ago

Clone of Mutating Daisyworld

Hoepfl
Darwinian Daisyworld model from and Watson & Lovelock (1983), Robertson & Robinson (1998) and Lenton & Lovelock (2001).

Units of time are 40 Myr, giving R&R's span of 10 Gyr.

This model offers many opportunities for modification. Maybe the Black and White populations can mutate into each other? The role of q as a measure of segregation of the B and W populations is interesting, and while this model uses purely stigmergic communication between species, direct interaction would also be possible.

HSWT BPI Biological Systems

  • 2 years 6 days ago

Clone of Mutating Daisyworld

Hoepfl
Darwinian Daisyworld model from and Watson & Lovelock (1983), Robertson & Robinson (1998) and Lenton & Lovelock (2001).

Units of time are 40 Myr, giving R&R's span of 10 Gyr.

This model offers many opportunities for modification. Maybe the Black and White populations can mutate into each other? The role of q as a measure of segregation of the B and W populations is interesting, and while this model uses purely stigmergic communication between species, direct interaction would also be possible.

HSWT BPI Biological Systems

  • 2 years 2 weeks ago

Clone of Daisyworld 2.0

Alexander
Darwinian Daisyworld model from and Watson & Lovelock (1983), Robertson & Robinson (1998) and Lenton & Lovelock (2001).

Units of time are 40 Myr, giving R&R's span of 10 Gyr.

This model offers many opportunities for modification. Maybe the Black and White populations can mutate into each other? The role of q as a measure of segregation of the B and W populations is interesting, and while this model uses purely stigmergic communication between species, direct interaction would also be possible.

HSWT BPI Biological Systems

  • 2 years 3 weeks ago

Clone of 0409: Daisyworld

Hoepfl
Darwinian Daisyworld model from and Watson & Lovelock (1983), Robertson & Robinson (1998) and Lenton & Lovelock (2001).

Units of time are 40 Myr, giving R&R's span of 10 Gyr.

This model offers many opportunities for modification. Maybe the Black and White populations can mutate into each other? The role of q as a measure of segregation of the B and W populations is interesting, and while this model uses purely stigmergic communication between species, direct interaction would also be possible.

HSWT BPI Biological Systems

  • 1 year 12 months ago

Clone of 0409: Daisyworld

Violeta Cabello
Darwinian Daisyworld model from and Watson & Lovelock (1983), Robertson & Robinson (1998) and Lenton & Lovelock (2001).

Units of time are 40 Myr, giving R&R's span of 10 Gyr.

This model offers many opportunities for modification. Maybe the Black and White populations can mutate into each other? The role of q as a measure of segregation of the B and W populations is interesting, and while this model uses purely stigmergic communication between species, direct interaction would also be possible.

HSWT BPI Biological Systems

  • 1 year 7 months ago

Clone of 0402: Interacting species

Pieter van der Ploeg
This is a very general model of two interacting species which describes a wide variety of different kinds of interaction, for example: cooperation, symbiosis, competition or predation.

Note that in systems biology the word 'species' can mean species of organism, species of chemical or species of cell. Similarly, 'interaction' can mean chemical interaction, genetic interaction or phenotypic interaction. We are talking here about very general kinds of system.

HSWT BPI Biological Systems

  • 1 year 3 months ago

Clone of Influence of Sympatric Speciation on Regulation

Louise Klarskov
We extended Daisyworld to evaluate the effects of sympatric speciation on regulation. Sympatric speciation occurs when organisms are segregated from each other by functional, rather than spatial, constraints. To emphasize the sympatric aspect of our model we halved the original value of 'q'. The dynamical model contains five potential species: gray, light gray, dark gray, black and white daisies, whose phenotypes differ only in their albedo.

Initially the model contains only gray daisies. Mutation of gray daisies leads to new daisy types. These new types can interbreed with their genetic neighbors or mutate even further. These mutations ultimately lead to black or white daisies.  When two types are functionally different enough they cannot interbreed and we consider them separate species.

Instructions:

You can change the 'Spread' of albedo between the different daisy types centered at the albedo of the gray daisies and in symmetric shades.

'gamma' is the general death rate for all daisies.

The 'Flow' defines the percentage of the actual population which mutates.

'q' defines the spatial distribution of thermal energy between the dasies.

'Base' is the optimal temperature of the general daisy.

'mu' is the probability of a mutation event.

Our model contains two possible luminosity scenarios. One relates to the increasing luminosity of the original Daisyworld. There is a second scenario implemented, which simulates different pertubations over a normally constant luminosity. To change between the scenarios simply reconnect the 'Absorbed Luminosity' variable with one of the container 'L'. Both scenarios are depicted in the diagram, so no changes are neccessary.

HSWT BPI Biological Systems

  • 4 months 2 weeks ago

Clone of 0402: Interacting species

Ginta Majore
This is a very general model of two interacting species which describes a wide variety of different kinds of interaction, for example: cooperation, symbiosis, competition or predation.

Note that in systems biology the word 'species' can mean species of organism, species of chemical or species of cell. Similarly, 'interaction' can mean chemical interaction, genetic interaction or phenotypic interaction. We are talking here about very general kinds of system.

HSWT BPI Biological Systems

  • 11 months 6 days ago

Clone of 0409: Daisyworld

Andres Felipe Atara Sanchez
Darwinian Daisyworld model from and Watson & Lovelock (1983), Robertson & Robinson (1998) and Lenton & Lovelock (2001).

Units of time are 40 Myr, giving R&R's span of 10 Gyr.

This model offers many opportunities for modification. Maybe the Black and White populations can mutate into each other? The role of q as a measure of segregation of the B and W populations is interesting, and while this model uses purely stigmergic communication between species, direct interaction would also be possible.

HSWT BPI Biological Systems

  • 7 months 2 weeks ago

Clone of 0409: Daisyworld

Leidy Muñoz Garcia
Darwinian Daisyworld model from and Watson & Lovelock (1983), Robertson & Robinson (1998) and Lenton & Lovelock (2001).

Units of time are 40 Myr, giving R&R's span of 10 Gyr.

This model offers many opportunities for modification. Maybe the Black and White populations can mutate into each other? The role of q as a measure of segregation of the B and W populations is interesting, and while this model uses purely stigmergic communication between species, direct interaction would also be possible.

HSWT BPI Biological Systems

  • 7 months 2 weeks ago

Clone of 0403: Chaotic pendulum

Benjamin Trive
A damped, driven pendulum. The combination of damping and driving provokes a minimal case of chaos. The system is not in itself biological, however its chaotic behaviour arises from competing oscillatory influences - a situation which plays a role in many biological systems.

HSWT BPI Biological Systems

  • 2 months 1 week ago

Pages