THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER REL

THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

THE MODEL IS ZONE SPECIFIC AS GLOBAL WEATHER IS NOT HOMOGENEOUS BUT A COLLECTION OF HEAT BUMBPS DEPENDENT ON POPULATION SIZE OF URBAN HEAT ISLANDS AND MASSED CONURBATIONS AND AGGLOMERATIONS 

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
 A model of the German FIT program, to develop understanding of the program and its implications. Specifically, we'll ask the questions: 1. What is the impact of the FIT program on Installed Solar Capacity 2. What is the impact of the FIT program on the size of the solar installation and maintenance

A model of the German FIT program, to develop understanding of the program and its implications. Specifically, we'll ask the questions: 1. What is the impact of the FIT program on Installed Solar Capacity 2. What is the impact of the FIT program on the size of the solar installation and maintenance industry base 3. What is the impact of the FIT program on the long term unsubsidized Cost per Watt of solar power

This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
 A model of the German FIT program, to develop understanding of the program and its implications. Specifically, we'll ask the questions: 1. What is the impact of the FIT program on Installed Solar Capacity 2. What is the impact of the FIT program on the size of the solar installation and maintenance

A model of the German FIT program, to develop understanding of the program and its implications. Specifically, we'll ask the questions: 1. What is the impact of the FIT program on Installed Solar Capacity 2. What is the impact of the FIT program on the size of the solar installation and maintenance industry base 3. What is the impact of the FIT program on the long term unsubsidized Cost per Watt of solar power

  The current electricity portfolio of Texas  is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of less carbon

The current electricity portfolio of Texas is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of less carbon-intensive fossil fuels (e.g. natural gas).

As boundaries to our problem, we will be using 35 years as our time frame. We will also limit our model to the State of Texas as our spatial extent. Over the past decade, Texas is becoming a major natural gas consumer; the electricity portfolio has been gradually changing. However, around 40% of electricity is still generated from burning coal, and only a very minor portion of electricity is from renewables. Texas is betting better in adopting solar and wind energy, however generally speaking the state is still falling behind in renewable energy.

The two main goals are to lower the overall emission of greenhouse gases for the electricity grid and to encourage growth of cleaner, renewable energy resources.

Our objectives include maximizing the economic benefits of exploring unconventional oil and natural gas resources, diversifying the energy portfolio of Texas, encouraging the production and exportation of unconventional hydrocarbon resources, and reallocating the added revenue to the transition to renewables, like wind and solar

 Exploratory model to understand the Massachusetts Solar Renewable Energy Credit market dynamics, and it's impact on Installed Capacity, Industry Base, and Cost per Watt of installation.

Exploratory model to understand the Massachusetts Solar Renewable Energy Credit market dynamics, and it's impact on Installed Capacity, Industry Base, and Cost per Watt of installation.

   THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

   THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

 A model of the German FIT program, to develop understanding of the program and its implications. Specifically, we'll ask the questions: 1. What is the impact of the FIT program on Installed Solar Capacity 2. What is the impact of the FIT program on the size of the solar installation and maintenance

A model of the German FIT program, to develop understanding of the program and its implications. Specifically, we'll ask the questions: 1. What is the impact of the FIT program on Installed Solar Capacity 2. What is the impact of the FIT program on the size of the solar installation and maintenance industry base 3. What is the impact of the FIT program on the long term unsubsidized Cost per Watt of solar power

  The current electricity portfolio of Texas  is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of less carbon

The current electricity portfolio of Texas is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of less carbon-intensive fossil fuels (e.g. natural gas).

As boundaries to our problem, we will be using 35 years as our time frame. We will also limit our model to the State of Texas as our spatial extent. Over the past decade, Texas is becoming a major natural gas consumer; the electricity portfolio has been gradually changing. However, around 40% of electricity is still generated from burning coal, and only a very minor portion of electricity is from renewables. Texas is betting better in adopting solar and wind energy, however generally speaking the state is still falling behind in renewable energy.

The two main goals are to lower the overall emission of greenhouse gases for the electricity grid and to encourage growth of cleaner, renewable energy resources.

Our objectives include maximizing the economic benefits of exploring unconventional oil and natural gas resources, diversifying the energy portfolio of Texas, encouraging the production and exportation of unconventional hydrocarbon resources, and reallocating the added revenue to the transition to renewables, like wind and solar

This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
​







  The current electricity portfolio of Texas  is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of le

The current electricity portfolio of Texas is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of less carbon-intensive fossil fuels (e.g. natural gas).

As boundaries to our problem, we will be using 35 years as our time frame. We will also limit our model to the State of Texas as our spatial extent. Over the past decade, Texas is becoming a major natural gas consumer; the electricity portfolio has been gradually changing. However, around 40% of electricity is still generated from burning coal, and only a very minor portion of electricity is from renewables. Texas is betting better in adopting solar and wind energy, however generally speaking the state is still falling behind in renewable energy.

The two main goals are to lower the overall emission of greenhouse gases for the electricity grid and to encourage growth of cleaner, renewable energy resources.

Our objectives include maximizing the economic benefits of exploring unconventional oil and natural gas resources, diversifying the energy portfolio of Texas, encouraging the production and exportation of unconventional hydrocarbon resources, and reallocating the added revenue to the transition to renewables, like wind and solar

This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
   POPULATION CONTROL BASED ON THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE

POPULATION CONTROL BASED ON THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

This expanded World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.