A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

I used the "disease dynamics" tutorial to help me construct this ABM, in which the individual agents are students and the states in which they can find themselves (with regard to learning a new skill/concept) include "confusion," "familiarity," and "mastery." I modeled the transitions from one state
I used the "disease dynamics" tutorial to help me construct this ABM, in which the individual agents are students and the states in which they can find themselves (with regard to learning a new skill/concept) include "confusion," "familiarity," and "mastery." I modeled the transitions from one state to the next under the assumption that a student cannot transition from "mastery" of a particular concept back to "confusion." This model also operates under the assumption that the more students who become familiar with a skill, the more likely it is that other students will, too (presumably, students help each other). 

The skill I imagined being taught to these students is something like Argumentative Writing, as most students can become "familiar" with this skill (or perform "satisfactorily" in it), while only some students are likely to "master" this skill in a given school year. 

I labeled the transitions "exposure" and "practice" to signify that exposing students to a new skill/concept tends to lead to their becoming familiar with it, while students taking on the task of practicing is the only way for them to transition to mastery. 

I complicated this model by adding a teacher to the mix. I also changed the number of states that students can exhibit in order to make it such that there is a 50/50 chance that once a student has learned a skill, he/she will enter a state of confusion as opposed to familiarity with the new skill/concept. The states that teachers can enter include "helpful" and "overwhelmed." The "overwhelmed" state depends on the number of students who are in a state of confusion (asking too many questions). As students transition to the states of familiarity or mastery, the teacher becomes less overwhelmed and moves back into the state of simply being "helpful."  
 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
Three Agent Model of  IM-13669 . Unconscious affective dynamics Josh Epstein's Agent Zero Book  webpage  
Three Agent Model of IM-13669. Unconscious affective dynamics Josh Epstein's Agent Zero Book webpage 

 A spatially aware, agent based model of the spread of fear in a population through local contagion. Modified from a simple disease model. There are three states people can take based on: susceptible (Potentially Fearful), infected (Afraid), and recovered (Confident).  A very imperfect and laughably

A spatially aware, agent based model of the spread of fear in a population through local contagion. Modified from a simple disease model. There are three states people can take based on: susceptible (Potentially Fearful), infected (Afraid), and recovered (Confident).

A very imperfect and laughably sketchy simple start to pursue an unreasonably pompous proposal... https://metonymize.substack.com/p/what-anthropology-might-offer-ai

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.