Dynamic Modelling Models

These models and simulations have been tagged “Dynamic Modelling”.

​Modell für den Kurs Dynamic Modelling zur Simulierung von Insulin-Glukagon Haushalt nach Saunders et. al.    ©Michael Stühler
​Modell für den Kurs Dynamic Modelling zur Simulierung von Insulin-Glukagon Haushalt nach Saunders et. al.

©Michael Stühler
principe van het maken van een model
principe van het maken van een model
 Lotka Volterra equations     (delta Grass / delta T) = [WUEg]*[Water]*[Grass]*(([Kg]-[Grass]-a*[Trees])/[Kg])     (delta Trees / delta T) = [WUEt] * [Water] * [Trees] * (([Kt]-[Trees]-b*[Grass])/[Kt])
Lotka Volterra equations

(delta Grass / delta T) = [WUEg]*[Water]*[Grass]*(([Kg]-[Grass]-a*[Trees])/[Kg])

(delta Trees / delta T) = [WUEt] * [Water] * [Trees] * (([Kt]-[Trees]-b*[Grass])/[Kt])
    (delta Grass / delta T) = [WUEg]*[Water]*[Grass]*(([Kg]-[Grass])/[Kg])     (delta H / delta T) = [FUEh]*[Herbivores]*[Grass]*[Grazing rate]*(([Kh]-[Herbivores])/[Kh])*.5*[Water]

(delta Grass / delta T) = [WUEg]*[Water]*[Grass]*(([Kg]-[Grass])/[Kg])

(delta H / delta T) = [FUEh]*[Herbivores]*[Grass]*[Grazing rate]*(([Kh]-[Herbivores])/[Kh])*.5*[Water]
 with the carrying capacity instead of mortality rate.  K = Carrying capacity (g m-2)
with the carrying capacity instead of mortality rate.
K = Carrying capacity (g m-2)
 Lotka Volterra equations     (delta Grass / delta T) = [WUEg]*[Water]*[Grass]*(([Kg]-[Grass]-a*[Trees])/[Kg])     (delta Trees / delta T) = [WUEt] * [Water] * [Trees] * (([Kt]-[Trees]-b*[Grass])/[Kt])
Lotka Volterra equations

(delta Grass / delta T) = [WUEg]*[Water]*[Grass]*(([Kg]-[Grass]-a*[Trees])/[Kg])

(delta Trees / delta T) = [WUEt] * [Water] * [Trees] * (([Kt]-[Trees]-b*[Grass])/[Kt])