Dynamic-Systems Models

These models and simulations have been tagged “Dynamic-Systems”.

 The Lorenz Equations are a simplified model of atmospheric convection comprising three-dimensional differential equations.  The equations have three parameters (A, B, and C) that can be varied to create periodic and aperiodic (chaotic) behaviour.

The Lorenz Equations are a simplified model of atmospheric convection comprising three-dimensional differential equations.

The equations have three parameters (A, B, and C) that can be varied to create periodic and aperiodic (chaotic) behaviour.

 The Lorenz Equations are a simplified model of atmospheric convection comprising three-dimensional differential equations.  The equations have three parameters (A, B, and C) that can be varied to create periodic and aperiodic (chaotic) behaviour.

The Lorenz Equations are a simplified model of atmospheric convection comprising three-dimensional differential equations.

The equations have three parameters (A, B, and C) that can be varied to create periodic and aperiodic (chaotic) behaviour.

 The Lorenz Equations are a simplified model of atmospheric convection comprising three-dimensional differential equations.  The equations have three parameters (A, B, and C) that can be varied to create periodic and aperiodic (chaotic) behaviour.

The Lorenz Equations are a simplified model of atmospheric convection comprising three-dimensional differential equations.

The equations have three parameters (A, B, and C) that can be varied to create periodic and aperiodic (chaotic) behaviour.