Kinematics Models

These models and simulations have been tagged “Kinematics”.

Related tagsPhysicsWind Resistance

  object is projected with an initial velocity u at an angle to the horizontal direction.  We assume that there is no air resistance .Also since the body first goes up and then comes down after reaching the highest point , we will use the Cartesian convention for signs of different physical quantiti

object is projected with an initial velocity u at an angle to the horizontal direction.

We assume that there is no air resistance .Also since the body first goes up and then comes down after reaching the highest point , we will use the Cartesian convention for signs of different physical quantities. The acceleration due to gravity 'g' will be negative as it acts downwards.

h=v_ox*t-g*t^2/2

l=v_oy*t
 
  Um ponto
material percorre uma trajetória circular de raio R = 20m com movimento uniformemente variado e
aceleração escalar a = 5m/s². Sabendo-se que no instante
t = 0 sua velocidade escalar é nula, determine no instante t = 2s os módulos da:   a) Velocidade vetorial;  b) Aceleração tangencial;

Um ponto material percorre uma trajetória circular de raio R = 20m com movimento uniformemente variado e aceleração escalar a = 5m/s². Sabendo-se que no instante t = 0 sua velocidade escalar é nula, determine no instante t = 2s os módulos da:

a) Velocidade vetorial;

b) Aceleração tangencial;

c) Aceleração centrípeta;

d) Aceleração vetorial.

Fonte: (RAMALHO,NICOLAU E TOLEDO; Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Movimento Vertical no Vácuo.

  object is projected with an initial velocity u at an angle to the horizontal direction.  We assume that there is no air resistance .Also since the body first goes up and then comes down after reaching the highest point , we will use the Cartesian convention for signs of different physical quantiti

object is projected with an initial velocity u at an angle to the horizontal direction.

We assume that there is no air resistance .Also since the body first goes up and then comes down after reaching the highest point , we will use the Cartesian convention for signs of different physical quantities. The acceleration due to gravity 'g' will be negative as it acts downwards.

h=v_ox*t-g*t^2/2

l=v_oy*t
 
  Um veículo parte do
repouso em movimento retilíneo e acelera com aceleração escalar constante e
igual a 2,0 m/s2. Pode-se dizer que sua velocidade escalar e a distância
percorrida após 3,0 segundos, valem, respectivamente:   Fonte: FUVEST -2004   Clique aqui  para ver uma descrição do que é  Mov

Um veículo parte do repouso em movimento retilíneo e acelera com aceleração escalar constante e igual a 2,0 m/s2. Pode-se dizer que sua velocidade escalar e a distância percorrida após 3,0 segundos, valem, respectivamente:

Fonte: FUVEST -2004

Clique aqui para ver uma descrição do que é Movimento Uniformemente Variado

  object is projected with an initial velocity u at an angle to the horizontal direction.  We assume that there is no air resistance .Also since the body first goes up and then comes down after reaching the highest point , we will use the Cartesian convention for signs of different physical quantiti

object is projected with an initial velocity u at an angle to the horizontal direction.

We assume that there is no air resistance .Also since the body first goes up and then comes down after reaching the highest point , we will use the Cartesian convention for signs of different physical quantities. The acceleration due to gravity 'g' will be negative as it acts downwards.

h=v_ox*t-g*t^2/2

l=v_oy*t
 
  Um corpo é
lançado obliquamente no vácuo com velocidade inicial de 100 m/s, numa direção que forma com
a horizontal um ângulo x, tal que sen(x) = 0,8 e cos(x) = 0,6. Adotando g = 10m/s², determine:   a) Os módulos das componentes horizontal e vertical da
velocidade no instante de lançamento;  b)

Um corpo é lançado obliquamente no vácuo com velocidade inicial de 100 m/s, numa direção que forma com a horizontal um ângulo x, tal que sen(x) = 0,8 e cos(x) = 0,6. Adotando g = 10m/s², determine:

a) Os módulos das componentes horizontal e vertical da velocidade no instante de lançamento;

b) O instante em que o corpo atinge o ponto mais alto da trajetória;

c) A altura máxima atingida pelo corpo;

d) O alcance do lançamento.

Fonte: (RAMALHO, NICOLAU E TOLEDO;Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Lançamento Oblíquo no vácuo.

 
  Um corpo é
lançado obliquamente no vácuo com velocidade inicial de 100 m/s, numa direção que forma com
a horizontal um ângulo x, tal que sen(x) = 0,8 e cos(x) = 0,6. Adotando g = 10m/s², determine:   a) Os módulos das componentes horizontal e vertical da
velocidade no instante de lançamento;  b)

Um corpo é lançado obliquamente no vácuo com velocidade inicial de 100 m/s, numa direção que forma com a horizontal um ângulo x, tal que sen(x) = 0,8 e cos(x) = 0,6. Adotando g = 10m/s², determine:

a) Os módulos das componentes horizontal e vertical da velocidade no instante de lançamento;

b) O instante em que o corpo atinge o ponto mais alto da trajetória;

c) A altura máxima atingida pelo corpo;

d) O alcance do lançamento.

Fonte: (RAMALHO, NICOLAU E TOLEDO;Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Lançamento Oblíquo no vácuo.

Model showing combination of 6 simple machines
Model showing combination of 6 simple machines
 
   OBLIQUE THROW IN VACUUM   A body is thrown obliquely into the vacuum at an initial velocity of 100 m / s, in a direction that forms with the horizontal an angle x, such that sin (x) = 0.8 and cos (x) = 0.6. Adopting g = 10m / s², determine:  (a) the horizontal and vertical velocity component mo

OBLIQUE THROW IN VACUUM

A body is thrown obliquely into the vacuum at an initial velocity of 100 m / s, in a direction that forms with the horizontal an angle x, such that sin (x) = 0.8 and cos (x) = 0.6. Adopting g = 10m / s², determine:

(a) the horizontal and vertical velocity component modules at the moment of launch;

(b) the instant at which the body reaches the highest point of its trajectory;

c) the maximum height reached by the body;

d) The range of the throw.

Source: RAMALHO, NICOLAU AND TOLEDO; Fundamentos de Física, Volume 1, 8th edition, pp. 12 - 169, 2003.

This model may be cloned and modified without prior permission of the authors. Thanks for quoting the source.