Business Models

These models and simulations have been tagged “Business”.

Related tagsTechnology

This is a model which attempts to replicate a simple reinforcing loop described by Dennis Sherwood on page 75-87 of his book 'Seeing the forest for the trees - a manager's guide to applying systems thinking.  This is not a realistic model but I just wanted to reproduce it as practice of implementing
This is a model which attempts to replicate a simple reinforcing loop described by Dennis Sherwood on page 75-87 of his book 'Seeing the forest for the trees - a manager's guide to applying systems thinking.

This is not a realistic model but I just wanted to reproduce it as practice of implementing causal loop models.

www.stantonattree.com
 Model of growth from diffusion from John Morecroft's Strategic Modelling and Business Dynamics Book Ch6 p174-191. A discussion of a bigger model of People's Express is in  http://bit.ly/HdaGy4  for a related You Tube video by John Morecroft on Reflections on System Dynamics and Strategy

Model of growth from diffusion from John Morecroft's Strategic Modelling and Business Dynamics Book Ch6 p174-191. A discussion of a bigger model of People's Express is in http://bit.ly/HdaGy4 for a related You Tube video by John Morecroft on Reflections on System Dynamics and Strategy

ABM approach to Bass Model of diffusion with a detractor state.    Still a work in progress.
ABM approach to Bass Model of diffusion with a detractor state.

Still a work in progress.
 Rich picture version of Causal loop diagram based on Jack  Homer's paper Worker burnout: a dynamic model with implications  for prevention and control System Dynamics Review 1985 1(1)42-62 See  IM-333  for the Simulation model and  IM-2178  for a related Causal Loop Diagram of Project Turnover 
  

Rich picture version of Causal loop diagram based on Jack  Homer's paper Worker burnout: a dynamic model with implications  for prevention and control System Dynamics Review 1985 1(1)42-62 See IM-333 for the Simulation model and IM-2178 for a related Causal Loop Diagram of Project Turnover

 

 Multi-echelon inventory optimization (sounds like a complicated phrase!) looks at the way we are placing the inventory buffers in the supply chain. The traditional practice has been to compute the safety stock looking at the lead times and the standard deviation of the demand at each node of the su
Multi-echelon inventory optimization (sounds like a complicated phrase!) looks at the way we are placing the inventory buffers in the supply chain. The traditional practice has been to compute the safety stock looking at the lead times and the standard deviation of the demand at each node of the supply chain. The so called classical formula computes safety stock at each node as Safety Stock = Z value of the service level* standard deviation * square root (Lead time). Does it sound complicated? It is not. It is only saying, if you know how much of the variability is there from your average, keep some 'x' times of that variability so that you are well covered. It is just the maths in arriving at it that looks a bit daunting. 

While we all computed safety stock with the above formula and maintained it at each node of the supply chain, the recent theory says, you can do better than that when you see the whole chain holistically. 

Let us say your network is plant->stocking point-> Distributor-> Retailer. You can do the above safety stock computation for 95% service level at each of the nodes (classical way of doing it) or compute it holistically. This simulation is to demonstrate how multi-echelon provides better service level & lower inventory.  The network has only one stocking point/one distributor/one retailer and the same demand & variability propagates up the supply chain. For a mean demand of 100 and standard deviation of 30 and a lead time of 1, the stock at each node works out to be 149 units (cycle stock + safety stock) for a 95% service level. You can start with 149 units at each level as per the classical formula and see the product shortage. Then, reduce the safety stock at the stocking point and the distributor levels to see the impact on the service level. If it does not get impacted, it means, you can actually manage with lesser inventory than your classical calculations. 

That's what your multi-echelon inventory optimization calculations do. They reduce the inventory (compared to classical computations) without impacting your service levels. 

Hint: Try with the safety stocks at distributor (SS_Distributor) and stocking point (SS_Stocking Point) as 149 each. Check the number of stock outs in the simulation. Now, increase the safety stock at the upper node (SS_stocking point) slowly upto 160. Correspondingly keep decreasing the safety stock at the distributor (SS_Distributor). You will see that for the same #stock outs, by increasing a little inventory at the upper node, you can reduce more inventory at the lower node.
Simple model used to assess the likely outcome of Revenue and Profit due to variability of purchase price, price impact on Units Sold, and Units Sold impact on Unit Cost.
Simple model used to assess the likely outcome of Revenue and Profit due to variability of purchase price, price impact on Units Sold, and Units Sold impact on Unit Cost.
Simple model used to assess the likely outcome of Revenue and Profit due to variability of purchase price, price impact on Units Sold, and Units Sold impact on Unit Cost.
Simple model used to assess the likely outcome of Revenue and Profit due to variability of purchase price, price impact on Units Sold, and Units Sold impact on Unit Cost.
7 months ago
 Model of growth from diffusion from John Morecroft's Strategic Modelling and Business Dynamics Book Ch6 p174-191. A discussion of a bigger model of People's Express is in  http://bit.ly/HdaGy4  for a related You Tube video by John Morecroft on Reflections on System Dynamics and Strategy

Model of growth from diffusion from John Morecroft's Strategic Modelling and Business Dynamics Book Ch6 p174-191. A discussion of a bigger model of People's Express is in http://bit.ly/HdaGy4 for a related You Tube video by John Morecroft on Reflections on System Dynamics and Strategy

 This models simulates a simple supply chain with one single producer. Two main parameters determine the behaviour: demand (min,max) and the fabrication speed.
This models simulates a simple supply chain with one single producer. Two main parameters determine the behaviour: demand (min,max) and the fabrication speed.
 Harvested fishery with endogenous investment and ship deployment policy. Ch 9 p345-360 John Morecroft (2007) Strategic Modelling and Business Dynamics. See simpler models at  IM-2990  and  IM-2991

Harvested fishery with endogenous investment and ship deployment policy. Ch 9 p345-360 John Morecroft (2007) Strategic Modelling and Business Dynamics. See simpler models at IM-2990 and IM-2991

 Whether you are a
start-up business or a business that has been standing for quite a while, your
reputation as a business is critical for the functioning of it. Not just your
reputation but the image of your business or brand is also very important; the
people or the customers must be able to visua

Whether you are a start-up business or a business that has been standing for quite a while, your reputation as a business is critical for the functioning of it. Not just your reputation but the image of your business or brand is also very important; the people or the customers must be able to visualize your business when they think of it and it is your duty as the owner to build this image, a positive and radiant image that will stand out from the rest and remain in their minds long after their encounter with it. So the big question is, how can one go about doing this? At first it may sound daunting and seem like such a big feat, I mean think about it, the responsibility of building a powerful image in the minds of many different types of people sounds scary. But really, if you look at it more prospectively you will learn that this is not quite true and is also easier than it sounds. The key is to pay attention to little things rather than only the bigger picture.

By following some of these the problem can be resolved. And there will be growth in the business development.

School project - optimization of company resource destribution leading to get better fluctuation results
School project - optimization of company resource destribution leading to get better fluctuation results
 Bottom-Up Sales Forecasting for Startups     The purpose of this simulation is to demonstrate the implications of forecasting sales without consideration for how much it cost you to acquire a lead and how much you have available to spend. A common mistake in sales forecasting is to define your # of
Bottom-Up Sales Forecasting for Startups

The purpose of this simulation is to demonstrate the implications of forecasting sales without consideration for how much it cost you to acquire a lead and how much you have available to spend. A common mistake in sales forecasting is to define your # of expected sales leads based on your total market size and your assumption regarding the % of that market you can reach. 

This model demonstrates the forecasting impact to defining the # of expect leads based on how much it cost you to acquire a lead and how much you have available to spend. 

Important Variables:
1. [UseLAC?] (set to 1 to use the lead acquisition cost to define your reachable market; use 0 to set the reachable market to equal the total available market size)
2. LAC (should equal what it cost you to acquire a lead)
3. SalesMarketingBudget : how much you have available to spend on customer acquisition

Other Variables:
4. Price : Avg spending amount per new customer
5. Total Available Market : Total available market size
6. Conversion Rate : the % of your target market that will become a lead


5 months ago