This is an implementation of the 'Very Simple Ecosystem Model' (VSEM) from R package BayesianTools (Hartig et al. 2019). It consists of three stocks: aboveground carbon in plant biomass, belowground carbon in plant biomass and carbon in soil organic matter.     Reference:  Florian Hartig, Francesco
This is an implementation of the 'Very Simple Ecosystem Model' (VSEM) from R package BayesianTools (Hartig et al. 2019). It consists of three stocks: aboveground carbon in plant biomass, belowground carbon in plant biomass and carbon in soil organic matter. 

Reference:
Florian Hartig, Francesco Minunno and Stefan Paul (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
This is a partial implementation of the 'Very Simple Ecosystem Model' (VSEM) from R package BayesianTools (Hartig et al. 2019). It simulates Gross and Net Primary Productivity based on a simple light-use efficiency model. Daily PAR values were generated in R using the BayesianTools function "VSEMcre
This is a partial implementation of the 'Very Simple Ecosystem Model' (VSEM) from R package BayesianTools (Hartig et al. 2019). It simulates Gross and Net Primary Productivity based on a simple light-use efficiency model. Daily PAR values were generated in R using the BayesianTools function "VSEMcreatePAR()".

Reference:
Florian Hartig, Francesco Minunno and Stefan Paul (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
199 10 months ago
A system diagram for the Mojave Desert for an assignment at OSU- RNG 341.
A system diagram for the Mojave Desert for an assignment at OSU- RNG 341.
A system diagram for the Mojave Desert including example socio-economic factors for an assignment at OSU- RNG 341.
A system diagram for the Mojave Desert including example socio-economic factors for an assignment at OSU- RNG 341.
A food web of some of the organism in any given city park in Chicago.
A food web of some of the organism in any given city park in Chicago.
A simple and easy to follow model of how fertility and mortality affect a population, using ferns as an example.
A simple and easy to follow model of how fertility and mortality affect a population, using ferns as an example.
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

72 last week
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

3 weeks ago
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
This is the summary of lecture ​1 of my Course about StartUps. It's an intro to the startup ecosystem and the different stakeholders that can interact with your new enterprise at different stages of its evolution and growth. -version 1 - for info or suggestions: bonato.pietroz@gmail.com
This is the summary of lecture ​1 of my Course about StartUps. It's an intro to the startup ecosystem and the different stakeholders that can interact with your new enterprise at different stages of its evolution and growth. -version 1 - for info or suggestions: bonato.pietroz@gmail.com
Competition of bacteria and fungi for organic matter.
Competition of bacteria and fungi for organic matter.
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
​Modelo retirado do link  https://insightmaker.com/insight/71649/Fern-Population-Model
​Modelo retirado do link 
https://insightmaker.com/insight/71649/Fern-Population-Model
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
12 months ago
Simple simulation about an ecosystem including preys and predators
Simple simulation about an ecosystem including preys and predators
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools