A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a compon
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

   POPULATION CONTROL BASED ON THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE

POPULATION CONTROL BASED ON THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

This expanded World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

   THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER REL

THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

THE MODEL IS ZONE SPECIFIC AS GLOBAL WEATHER IS NOT HOMOGENEOUS BUT A COLLECTION OF HEAT BUMBPS DEPENDENT ON POPULATION SIZE OF URBAN HEAT ISLANDS AND MASSED CONURBATIONS AND AGGLOMERATIONS 

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
 A Susceptible-Infected-Recovered (SIR) disease model with isolation policies.

A Susceptible-Infected-Recovered (SIR) disease model with isolation policies.

How do drugs affect us on individual and popular levels? Let's take a look at drug addiction as a system and pick it apart based on its biological, financial, mental, and communal effects.
How do drugs affect us on individual and popular levels? Let's take a look at drug addiction as a system and pick it apart based on its biological, financial, mental, and communal effects.
 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

 Based on this particular model created by Lutfi Andriyanto and Aulia Nur Fajriyah: https://insightmaker.com/insight/2wxxIeiWJsHNFGNH6cf6ke/SEIR     Updated by (Kelompok 2):  Daffa Muhammad Romero	20/456363/TK/50493  Iskan Mustamir			20/456367/TK/50497  Tasya Nafisah Kamal		20/460569/TK/51158  Hervi

Based on this particular model created by Lutfi Andriyanto and Aulia Nur Fajriyah: https://insightmaker.com/insight/2wxxIeiWJsHNFGNH6cf6ke/SEIR


Updated by (Kelompok 2):

Daffa Muhammad Romero 20/456363/TK/50493

Iskan Mustamir 20/456367/TK/50497

Tasya Nafisah Kamal 20/460569/TK/51158

Hervi Nur Rahmadien 20/463601/TK/51593

​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
 A Susceptible-Infected-Recovered (SIR) disease model with herd immunity and isolation policies.

A Susceptible-Infected-Recovered (SIR) disease model with herd immunity and isolation policies.

 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunb
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
 SIR model with herd immunity - Metrics by Guy Laekman   A Susceptible-Infected-Recovered (SIR) disease model with herd immunity

SIR model with herd immunity - Metrics by Guy Laekman

A Susceptible-Infected-Recovered (SIR) disease model with herd immunity

This three loop goal-seeking structure identifies the three key influences on managing blood glucose for people with diabetes - insulin injections reduce blood glucose levels, exercise reduces blood glucose levels, and food increases blood glucose levels.  The balance of all three is necessary to ma
This three loop goal-seeking structure identifies the three key influences on managing blood glucose for people with diabetes - insulin injections reduce blood glucose levels, exercise reduces blood glucose levels, and food increases blood glucose levels.  The balance of all three is necessary to manage diabetes.
   THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

​This model has been constructed from the model published in the following article:  Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control".    System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
​This model has been constructed from the model published in the following article:
Jack B. Homer, "Worker burnout: a dynamic model with implications for prevention and control". 
System Dynamics Review 1 (no. 1, Summer 1985): 42-62. ISSN 0883-7066. 0 1985 by the Svstem Dynamics Society. 
 A Susceptible-Infected-Recovered (SIR) disease model

A Susceptible-Infected-Recovered (SIR) disease model