A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

This is my first attempt at creating a simple Agent Based Simulation Model. Nothing fancy, just something that works.    If you find these contributions meaningful your  sponsorship  would be greatly appreciated.
This is my first attempt at creating a simple Agent Based Simulation Model. Nothing fancy, just something that works.

If you find these contributions meaningful your sponsorship would be greatly appreciated.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube

11 months ago
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of the spread of fear in a population through local contagion. Modified from a simple disease model. There are three states people can take based on: susceptible (Potentially Fearful), infected (Afraid), and recovered (Confident).  A very imperfect and laughably

A spatially aware, agent based model of the spread of fear in a population through local contagion. Modified from a simple disease model. There are three states people can take based on: susceptible (Potentially Fearful), infected (Afraid), and recovered (Confident).

A very imperfect and laughably sketchy simple start to pursue an unreasonably pompous proposal... https://metonymize.substack.com/p/what-anthropology-might-offer-ai

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

Demo of population growth with distinct agents.
Demo of population growth with distinct agents.
A new archetype, The Tyranny of Small Steps (TYST) has been observed. Explained through a system dynamics perspective, the archetypical behaviour TYST is an unwanted change to a system through a series of small activities that may be independent from one another. These activities are small enough no
A new archetype, The Tyranny of Small Steps (TYST) has been observed. Explained through a system dynamics perspective, the archetypical behaviour TYST is an unwanted change to a system through a series of small activities that may be independent from one another. These activities are small enough not to be detected by the ‘surveillance’ within the system, but significant enough to encroach upon the “tolerance” zone of the system and compromise the integrity of the system. TYST is an unintentional process that is experienced within the system and made possible by the lack of transparency between an overarching level and a local level where the encroachment is taking place.

Reference:

Haraldsson, H. V., Sverdrup, H. U., Belyazid, S., Holmqvist, J. and Gramstad, R. C. J. (2008), The Tyranny of Small Steps: a reoccurring behaviour in management. Syst. Res., 25: 25–43. doi: 10.1002/sres.859 

First attempt at transition between multiple states
First attempt at transition between multiple states