From "A Causal Model of Organizational Performance and Change," By Burke, W. W. & Litwin, G.H., In  Journal of Management , 18, pp. 523-545.
From "A Causal Model of Organizational Performance and Change," By Burke, W. W. & Litwin, G.H., In Journal of Management, 18, pp. 523-545.
 ​Physical meaning of the equations  The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:        1. The prey population finds ample food at all times.    2. The food supply of the predator population depends entirely on the
​Physical meaning of the equations
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


           This version of the   CAPABILITY DEMONSTRATION   model has been further calibrated (additional calibration phases will occur as better standardized data becomes available).  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Re
This version of the CAPABILITY DEMONSTRATION model has been further calibrated (additional calibration phases will occur as better standardized data becomes available).  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes and durations of impact remain in need of further data & adjustment (calibration). In the interests of maintaining steady progress and respecting budget & time constraints, significant simplifying assumptions have been made: assumptions that mitigate both completeness & accuracy of the outputs.  This model meets the criteria for a Capability demonstration model, but should not be taken as complete or realistic in terms of specific magnitudes of effect or sufficient build out of causal dynamics.  Rather, the model demonstrates the interplay of a minimum set of causal forces on a net student progress construct -- as informed and extrapolated from the non-causal research literature.
Provided further interest and funding, this  basic capability model may further de-abstracted and built out to: higher provenance levels -- coupled with increased factorization, rigorous causal inclusion and improved parameterization.
Modelling the rate of school dropout 
Modelling the rate of school dropout 
  The Information Distribution Problem        Exploring a basis for distributing and organizing information is critical to the foundations of any system. It's a losing battle trying to combat information intake, without informative output. If we lived in a world with a technological system designed
The Information Distribution Problem 
 
 Exploring a basis for distributing and organizing information is critical to the foundations of any system. It's a losing battle trying to combat information intake, without informative output. If we lived in a world with a technological system designed to do so, everyone's lives would be affected for the better. 

 By selectively designing the following technologies, a global system of education based on the validity of information is establishable.

Blockchain(s) Personal & Public
Simulated/Augmented Reality
Digital Textbook/Interactive Compendium
Artificial Intelligence
Virtual Mentorship Program(s)
2 months ago
 ​Physical meaning of the equations  The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:        1. The prey population finds ample food at all times.    2. The food supply of the predator population depends entirely on the
​Physical meaning of the equations
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


  ​Predator-prey
models are the building masses of the bio-and environments as bio
masses are become out of their asset masses. Species contend, advance and
scatter essentially to look for assets to support their battle for their very
presence. This model is designed to represent the moose and wolf

​Predator-prey models are the building masses of the bio-and environments as bio masses are become out of their asset masses. Species contend, advance and scatter essentially to look for assets to support their battle for their very presence. This model is designed to represent the moose and wolf population on Isle Royal. The variables include moose population, wolf population, moose birth rate, wolf birth rate, moose death proportionality constant, and wolf death proportionality constant. This model was adapted from https://insightmaker.com/insight/3A0dqQnXXh8zxWJtkwwAH9/Lotka-Volterra-Model-Prey-Predator-Simulation.

 Looking at Lotka-Volterra Model:

The well known Italian mathematician Vito Volterra proposed a differential condition model to clarify the watched increment in predator fish in the Adriatic Sea during World War I. Simultaneously in the United States, the conditions contemplated by Volterra were determined freely by Alfred Lotka (1925) to portray a theoretical synthetic response wherein the concoction fixations waver. The Lotka-Volterra model is the least complex model of predator-prey communications. It depends on direct per capita development rates, which are composed as f=b−py and g=rx−d. 

A detailed explanation of the parameters:

  • The parameter b is the development rate of species x (the prey) without communication with species y (the predators). Prey numbers are reduced by these collaborations: The per capita development rate diminishes (here directly) with expanding y, conceivably getting to be negative. 
  • The parameter p estimates the effect of predation on x˙/x. 
  • The parameter d is the death rate of species y without connection with species x. 
  • The term rx means the net rate of development of the predator population in light of the size of the prey population.

Reference:

http://www.scholarpedia.org/article/Predator-prey_model

https://insightmaker.com/insight/3A0dqQnXXh8zxWJtkwwAH9/Lotka-Volterra-Model-Prey-Predator-Simulation

  ​S-Curve + Delay for Bell Curve Showing Erlang Distribution      Generation of Bell Curve from Initial Market through Delay in Pickup of Customers     This provides the beginning of an Erlang distribution model      The  Erlang distribution  is a two parameter family of continuous  probability dis
​S-Curve + Delay for Bell Curve Showing Erlang Distribution

Generation of Bell Curve from Initial Market through Delay in Pickup of Customers

This provides the beginning of an Erlang distribution model

The Erlang distribution is a two parameter family of continuous probability distributions with support . The two parameters are:

  • a positive integer 'shape' 
  • a positive real 'rate' ; sometimes the scale , the inverse of the rate is used.

Crea un Bucle de Realimentación Negativa, modelando el llenado de un vaso con agua. Universidad del Cauca.  Profesor: Miguel Angel Niño Zambrano  curso:  Enlace Curso en Moodle   Videos ejemplos:  Enlace a la lista de videos del curso youtube
Crea un Bucle de Realimentación Negativa, modelando el llenado de un vaso con agua.
Universidad del Cauca. 
Profesor: Miguel Angel Niño Zambrano
This models how students learn through the ALEKS math software.
This models how students learn through the ALEKS math software.
ONE version of misnamed "Tragedy of the Commons" in which an open-access resources is overexploited by individuals maximizing their respective short-term gains from its use. The delay in the impact of individual activities leads to overshoot of carrying capacity.  Use to explore ...
ONE version of misnamed "Tragedy of the Commons" in which an open-access resources is overexploited by individuals maximizing their respective short-term gains from its use. The delay in the impact of individual activities leads to overshoot of carrying capacity.

Use to explore ...
From "A Causal Model of Organizational Performance and Change," By Burke, W. W. & Litwin, G.H., In  Journal of Management , 18, pp. 523-545.
From "A Causal Model of Organizational Performance and Change," By Burke, W. W. & Litwin, G.H., In Journal of Management, 18, pp. 523-545.
From "A Causal Model of Organizational Performance and Change," By Burke, W. W. & Litwin, G.H., In  Journal of Management , 18, pp. 523-545.
From "A Causal Model of Organizational Performance and Change," By Burke, W. W. & Litwin, G.H., In Journal of Management, 18, pp. 523-545.
 This map is only of use to me, while I'm trying to gain more insights and playing with this tool: InsightMaker

This map is only of use to me, while I'm trying to gain more insights and playing with this tool: InsightMaker

 ​Physical meaning of the equations  The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:        1. The prey population finds ample food at all times.    2. The food supply of the predator population depends entirely on the
​Physical meaning of the equations
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


Exploring the relationship between communities and educational systems as a matter of community engagement.
Exploring the relationship between communities and educational systems as a matter of community engagement.
This is a simple population model designed to illustrate some of the concepts of stock and flow diagrams and simulation modelling.    We replaced the variable "Life Expectancy" with a converter that allows us to indicate how life expectancy declines over time with an increasing population (due to sc
This is a simple population model designed to illustrate some of the concepts of stock and flow diagrams and simulation modelling.

We replaced the variable "Life Expectancy" with a converter that allows us to indicate how life expectancy declines over time with an increasing population (due to scarcity of resources, urban crowding, disease, etc) assuming no further technological or medical advancements.