# Chaos Models

These models and simulations have been tagged “Chaos”.

Related tagsPopulationBiologyEducationEcologyFractalsMathematics

These models and simulations have been tagged “Chaos”.

Related tagsPopulationBiologyEducationEcologyFractalsMathematics

THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

20

The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

When multiplied out, the prey equation becomes

The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term *αx*. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by *βxy*. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

PredatorsThe predator equation becomes

dy/dt = * - *

In this equation, *{\displaystyle \displaystyle \delta xy}* represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). *{\displaystyle \displaystyle \gamma y}* represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system. For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system. The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926). Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them. Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined. Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed. Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey. It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature. And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

When multiplied out, the prey equation becomes

The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term *αx*. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by *βxy*. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

PredatorsThe predator equation becomes

dy/dt = * - *

In this equation, *{\displaystyle \displaystyle \delta xy}* represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). *{\displaystyle \displaystyle \gamma y}* represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.

The L**ogistic Map** is a polynomial mapping (equivalently, recurrence relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by Pierre François Verhulst.

where:

is a number between zero and one, and represents the ratio of existing population to the maximum possible population at yearFor approximate Continuous Behavior set 'R Base' to a small number like 0.125To generate a bifurcation diagram, set 'r base' to 2 and 'r ramp' to 1

To demonstrate sensitivity to initial conditions, try two runs with 'r base' set to 3 and 'Initial X' of 0.5 and 0.501, then look at first ~20 time steps

26

Z206 from Hartmut Bossel System Zoo 1 p99-102 See also a beautiful Youtube 3D Video Simulation

The equation for DeltaN is a version of

Nj+1 = Nj + mu (1- Nj / Nmax ) Njthe maximum population is set to be one million, and the growth rate constant mu = 3.

Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

F(t) = 1 - e ^ -λt

Where

• F(t) is the probability of failure

• λ is the failure rate in 1/time unit (1/h, for example)

• t is the observed service life (h, for example)

The inverse curve is the trust time

On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.

This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.

A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime,

B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.

The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period.

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system. For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system. The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926). Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them. Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined. Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed. Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey. It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature. And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

When multiplied out, the prey equation becomes

The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term *αx*. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by *βxy*. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

PredatorsThe predator equation becomes

dy/dt = * - *

In this equation, *{\displaystyle \displaystyle \delta xy}* represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). *{\displaystyle \displaystyle \gamma y}* represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.

137

https://insightmaker.com/insight/1830/Rossler-Chaotic-Attractor

for this example of chaos, and the

We're looking into environmental applications in our course, and how dramatically dynamics can change, based on a small change in parameters. Climate change "suffers" this chaotic behavior, we fear, and we're going to be "taken by surprise" when the dynamics changes on us suddenly....

Andy Long

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

Predator-prey models are the building masses of the bio-and environments as bio masses are become out of their asset masses. Species contend, advance and scatter essentially to look for assets to support their battle for their very presence. Contingent upon their particular settings of uses, they can take the types of asset resource-consumer, plant-herbivore, parasite-have, tumor cells- immune structure, vulnerable irresistible collaborations, and so on. They manage the general misfortune win connections and thus may have applications outside of biological systems. At the point when focused connections are painstakingly inspected, they are regularly in actuality a few types of predator-prey communication in simulation.

**Looking at Lotka-Volterra Model:**

The well
known Italian mathematician Vito Volterra proposed a differential condition
model to clarify the watched increment in predator fish in the Adriatic Sea
during World War I. Simultaneously in the United States, the conditions
contemplated by Volterra were determined freely by Alfred Lotka (1925) to
portray a theoretical synthetic response wherein the concoction fixations
waver. The Lotka-Volterra model is the least complex model of predator-prey
communications. It depends on direct per capita development rates, which are
composed as **f=b−py** and **g=rx−d. **

__A detailed explanation of the parameters:__

- The parameter b is the development rate of species x (the prey) without communication with species y (the predators). Prey numbers are reduced by these collaborations: The per capita development rate diminishes (here directly) with expanding y, conceivably getting to be negative.
- The parameter p estimates the effect of predation on x˙/x.
- The parameter d is the death rate of species y without connection with species x.
- The term rx means the net rate of development of the predator population in light of the size of the prey population.

Reference:

http://www.scholarpedia.org/article/Predator-prey_model

The equation for DeltaN is a version of

Nj+1 = Nj + mu (1- Nj / Nmax ) Njthe maximum population is set to be one million, and the growth rate constant mu = 3.

Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

The equation for DeltaN is a version of

Nj+1 = Nj + mu (1- Nj / Nmax ) Njthe maximum population is set to be one million, and the growth rate constant mu = 3.

Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.

F(t) = 1 - e ^ -λt

Where

• F(t) is the probability of failure

• λ is the failure rate in 1/time unit (1/h, for example)

• t is the observed service life (h, for example)

The inverse curve is the trust time

On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.

This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.

A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime,

B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.

The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period.

Clone of Bio103 Predator-Prey Model ("Lotka'Volterra")

Thanks to Insight Author: John Petersen

Edits by Andy Long

Everything that follows the dashes was created by John Petersen (or at least came from his Insight model). I just wanted to make a few comments.

We are looking at Hare and Lynx, of course. Clone this insight, and change the names.

Then read the text below, to get acquainted with one of the most important and well-known examples of a simple system of differential equations in all of mathematics.

------------------------------------------------------------

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.

For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system.

The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926). Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them. Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined.

Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed.

Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey. It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most predator-prey dynamics in nature. And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.

The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

When multiplied out, the prey equation becomes

The predator equation becomes

dy/dt = * - *

*{\displaystyle \displaystyle \delta xy}* represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). *{\displaystyle \displaystyle \gamma y}* represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

The equation for DeltaN is a version of

Nj+1 = Nj + mu (1- Nj / Nmax ) Njthe maximum population is set to be one million, and the growth rate constant mu = 3.

Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)