Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
 System Zoo Z101: Single integration from System Zoo 1 by Hartmut Bossel

System Zoo Z101: Single integration from System Zoo 1 by Hartmut Bossel

System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

 An exploration of interactions among 'fuzzy' qualitative concepts that interact to produce either tolerance or violent conflict. ​Z509 p43-49 System Zoo 3 by Hartmut Bossel.

An exploration of interactions among 'fuzzy' qualitative concepts that interact to produce either tolerance or violent conflict. ​Z509 p43-49 System Zoo 3 by Hartmut Bossel.

Model Z605 Miniworld, from System Zoo 3 by Hartmut Bossel
Model Z605 Miniworld, from System Zoo 3 by Hartmut Bossel
System Zoo Z103: Exponential growth and decay from System Zoo 1 by Hartmut Bossel
System Zoo Z103: Exponential growth and decay from System Zoo 1 by Hartmut Bossel
System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

 Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

System Zoo Z105: Time-dependent growth from System Zoo 1 by Hartmut Bossel
System Zoo Z105: Time-dependent growth from System Zoo 1 by Hartmut Bossel
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
 Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example  IM-9010

Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example IM-9010

Insight Maker model based on the Z415 System Zoo model originally developed in Vensim.
Insight Maker model based on the Z415 System Zoo model originally developed in Vensim.
 System Zoo Z102: System state and state change from System Zoo 1 by Hartmut Bossel

System Zoo Z102: System state and state change from System Zoo 1 by Hartmut Bossel

 Attempting to outdo an opponent leads to escalation. A weaker response leads to De-escalation. A slightly more complex  form of  Insight 972 .  ​Z508 p36-38 System Zoo 3 by Hartmut Bossel.

Attempting to outdo an opponent leads to escalation. A weaker response leads to De-escalation. A slightly more complex  form of Insight 972.  ​Z508 p36-38 System Zoo 3 by Hartmut Bossel.

​System Zoo Z412 Tourism Dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
​System Zoo Z412 Tourism Dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources


 Perceptual Control Theory Model of Balancing an Inverted Pendulum. See  Kennaway's slides  on Robotics. as well as PCT example WIP notes. Compare with  IM-1831  from Z209 from Hartmut Bossel's System Zoo 1 p112-118

Perceptual Control Theory Model of Balancing an Inverted Pendulum. See Kennaway's slides on Robotics. as well as PCT example WIP notes. Compare with IM-1831 from Z209 from Hartmut Bossel's System Zoo 1 p112-118

 System Zoo Z111 H Bossel p47 a variant of Michaelis Menten Enzyme Kinetics. See also  IM-854  for Hannon and Ruth and  IM-855  for receptor version and  IM-856  for a bond graph view

System Zoo Z111 H Bossel p47 a variant of Michaelis Menten Enzyme Kinetics. See also IM-854 for Hannon and Ruth and IM-855 for receptor version and IM-856 for a bond graph view

System Zoo Z111: Density-dependent growth (Michaelis-Menten) from System Zoo 1 by Hartmut Bossel
System Zoo Z111: Density-dependent growth (Michaelis-Menten) from System Zoo 1 by Hartmut Bossel
System Zoo Z107: Infection dynamics from System Zoo 1 by Hartmut Bossel
System Zoo Z107: Infection dynamics from System Zoo 1 by Hartmut Bossel
System Zoo Z108: Overloading a buffer from System Zoo 1 by Hartmut Bossel
System Zoo Z108: Overloading a buffer from System Zoo 1 by Hartmut Bossel
System Zoo Z104: Exponential delay from System Zoo 1 by Hartmut Bossel
System Zoo Z104: Exponential delay from System Zoo 1 by Hartmut Bossel
 System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel 
 Exercise 6 simulates a whale poplutation with a minimum reproductive capacity

System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel

Exercise 6 simulates a whale poplutation with a minimum reproductive capacity