System Zoo Models

These models and simulations have been tagged “System Zoo”.

Related tagsPhysicsScience

Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

 An exploration of interactions among 'fuzzy' qualitative concepts that interact to produce either tolerance or violent conflict. ​Z509 p43-49 System Zoo 3 by Hartmut Bossel.

An exploration of interactions among 'fuzzy' qualitative concepts that interact to produce either tolerance or violent conflict. ​Z509 p43-49 System Zoo 3 by Hartmut Bossel.

 System Zoo Z404 Prey and two Predator Populations from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources     Often a single prey population is the source of food for several  competing predators (e.g. mice as prey of foxes and birds of prey)​. Here again a reliabl
System Zoo Z404 Prey and two Predator Populations from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

Often a single prey population is the source of food for several  competing predators (e.g. mice as prey of foxes and birds of prey)​. Here again a reliable intuitive assessment of long-term development resulting from the particular system relationship is impossible. A simulation model can assist in recognizing development trends inherent in the system structure even if in reality a variety of other factors determine the development and may cause it to proceed on a somewhat different path.
​System Zoo Z412 Tourism Dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
​System Zoo Z412 Tourism Dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources


 Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

 Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example  IM-9010

Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example IM-9010

 Perceptual Control Theory Model of Balancing an Inverted Pendulum. See  Kennaway's slides  on Robotics. as well as PCT example WIP notes. Compare with  IM-1831  from Z209 from Hartmut Bossel's System Zoo 1 p112-118

Perceptual Control Theory Model of Balancing an Inverted Pendulum. See Kennaway's slides on Robotics. as well as PCT example WIP notes. Compare with IM-1831 from Z209 from Hartmut Bossel's System Zoo 1 p112-118

 System Zoo Z101: Single integration from System Zoo 1 by Hartmut Bossel

System Zoo Z101: Single integration from System Zoo 1 by Hartmut Bossel

System Zoo Z105: Time-dependent growth from System Zoo 1 by Hartmut Bossel
System Zoo Z105: Time-dependent growth from System Zoo 1 by Hartmut Bossel
 System Zoo Z102: System state and state change from System Zoo 1 by Hartmut Bossel

System Zoo Z102: System state and state change from System Zoo 1 by Hartmut Bossel

Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
System Zoo Z103: Exponential growth and decay from System Zoo 1 by Hartmut Bossel
System Zoo Z103: Exponential growth and decay from System Zoo 1 by Hartmut Bossel
 System Zoo Z107 exercise 2: Infection dynamics, exercise 2 (a part of the population is immune to infection) from System Zoo 1 by Hartmut Bossel 
 This is my attempt at the problem, not necessarily correct!

System Zoo Z107 exercise 2: Infection dynamics, exercise 2 (a part of the population is immune to infection) from System Zoo 1 by Hartmut Bossel

This is my attempt at the problem, not necessarily correct!

 System Zoo Z111 H Bossel p47 a variant of Michaelis Menten Enzyme Kinetics. See also  IM-854  for Hannon and Ruth and  IM-855  for receptor version and  IM-856  for a bond graph view

System Zoo Z111 H Bossel p47 a variant of Michaelis Menten Enzyme Kinetics. See also IM-854 for Hannon and Ruth and IM-855 for receptor version and IM-856 for a bond graph view

 This models the progressive decline of the ability for self-reliance and the growing dependence on outside help. ​Z508 p39-42 System Zoo 3 by Hartmut Bossel. Strong outside help causes a collapse of self-help capacity. Weak outside help produces a stable combination of wellbeing and self-help capac

This models the progressive decline of the ability for self-reliance and the growing dependence on outside help. ​Z508 p39-42 System Zoo 3 by Hartmut Bossel. Strong outside help causes a collapse of self-help capacity. Weak outside help produces a stable combination of wellbeing and self-help capacity.

System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel
System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel
System Zoo Z104: Exponential delay from System Zoo 1 by Hartmut Bossel
System Zoo Z104: Exponential delay from System Zoo 1 by Hartmut Bossel
 System Zoo Z106: Simple population dynamics from System Zoo 1 by Hartmut Bossel

System Zoo Z106: Simple population dynamics from System Zoo 1 by Hartmut Bossel

System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

System Zoo Z107: Infection dynamics from System Zoo 1 by Hartmut Bossel
System Zoo Z107: Infection dynamics from System Zoo 1 by Hartmut Bossel
System Zoo Z111: Density-dependent growth (Michaelis-Menten) from System Zoo 1 by Hartmut Bossel
System Zoo Z111: Density-dependent growth (Michaelis-Menten) from System Zoo 1 by Hartmut Bossel