This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
   ​The probability density function (PDF) of the normal distribution or Bell Curve of Normal or Gaussian Distribution is the mean or expectation of the distribution (and also its median and mode).        The parameter is its standard deviation with its variance then, A random variable with a Gaussi
​The probability density function (PDF) of the normal distribution or Bell Curve of Normal or Gaussian Distribution is the mean or expectation of the distribution (and also its median and mode). 

The parameter is its standard deviation with its variance then, A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.
However, those who enjoy upskirts are called deviants and have a variable distribution :) 

A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.

If mu = 0 and sigma = 1

If the Higher Education Numbers Are Increased then the group decision making ability of society would be raised above that of a middle teenager as it is now
BUT 
Governments can control children by using bad parenting techniques, pandering to the pleasure principle, so they will make higher education more and more difficult as they are doing


85% of the population has a qualification level equal or below a 12th grader, 17 year old ... the chance of finding someone with any sense is low (~1 in 6) and the outcome of them being chosen by those who are uneducated in the policies they are to decide is even more rare !!!

Experience means little if you don't have enough brain to analyse it

Democracy is only as good as the ability of the voters to FULLY understand the implications of the policies on which they vote., both context and the various perspectives.   National voting of unqualified voters on specific policy issues is the sign of corrupt manipulation.

Democracy:  Where a group allows the decision ability of a teenager to decide on a choice of mis-representatives who are unqualified to make judgement on social policies that affect the lives of millions.
The kind of children who would vote for King Kong who can hold a girl in one hand and swat fighter jets out of teh sky off the tallest building, doesn't have a brain cell or thought to call his own but has a nice smile and offers little girls sweets.


updated 16/3/2020 from 4 years 3 months ago
 This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems.  Ecology and Society   18 (3): 27.  link
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems. Ecology and Society 18(3): 27. link

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.


  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
19 2 months ago
    Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly int

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system.  The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926).  Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them.  Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined.  Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed.  Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey.  It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature.  And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


 A simulation illustrating simple predator prey dynamics. You have two populations.

A simulation illustrating simple predator prey dynamics. You have two populations.

 Introduction  Simple model of the spring bloom in coastal temperate coastal waters. Nitrogen is assumed to be the limiting nutrient, so the model is based on N only. The model represents one liter of water. Dissolved inorganic nitrogen (DIN) accumulates in the water column during winter and has rea
Introduction
Simple model of the spring bloom in coastal temperate coastal waters. Nitrogen is assumed to be the limiting nutrient, so the model is based on N only. The model represents one liter of water. Dissolved inorganic nitrogen (DIN) accumulates in the water column during winter and has reached 250 µmol/L on March 1st where the model starts. At this time the light intensity have just reached the level necessary to initiate the bloom.

Model setup
N uptake: Michaelis Menten kinetics with a maximum growth rate that doubles the population each day. Km=5µM.

Grazing: Michaelis Menten kinetics with a maximum daily uptake equal to the N in the population. Km=50µM.

Sloppy eating: 60% of the grazing is wasted to PON

Death: 5% of the zooplankton dies each day

Mineralization: 1% of the PON is mineralized to DIN each day

Results
For the first 6 days the phytoplankton grows exponentially and depletes the DIN pool. The peak in phytoplankton is followed by a delayed peak in zooplankton due to its slower growth rate. Slowly the zooplankton graze down the spring bloom and the nitrogen is transformed to the pool of particulate dead organic nitrogen (PON). While this happens the phytoplankton is kept low by the still high zooplankton which allow the DIN pool to increase from day 25 to day 55. Eventually the phytoplankton escapes the top down control and we see a secondary bloom based on regenerated DIN.
 ​Physical meaning of the equations  The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:        1. The prey population finds ample food at all times.    2. The food supply of the predator population depends entirely on the
​Physical meaning of the equations
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
This model describes how costs, income and ecosystem services change with stocking rate.
This model describes how costs, income and ecosystem services change with stocking rate.
Common Timothy is an invasive grass species.  Alpine Timothy is the native grass species in Yellowstone.  I calculated the carrying capacity of the grasses by converting acres, square feet, pounds per square feet and seeds per pound.  There is a higher birth rate and lower death rate for the common
Common Timothy is an invasive grass species.  Alpine Timothy is the native grass species in Yellowstone.  I calculated the carrying capacity of the grasses by converting acres, square feet, pounds per square feet and seeds per pound.  There is a higher birth rate and lower death rate for the common timothy because the grass is taking over the area due to a lack of wildlife predators.
  Overview  

 It is a model simulating
logging and adventure tourism (mountain bike riding) competition in Derby,
Tasmania. It is a chance for northeast Tasmania to become an exciting, new, world-class
product for the mountain bike tourism industry, which drives local economic
development. 

 Simul

Overview

It is a model simulating logging and adventure tourism (mountain bike riding) competition in Derby, Tasmania. It is a chance for northeast Tasmania to become an exciting, new, world-class product for the mountain bike tourism industry, which drives local economic development.

Simulation borrowed from the Easter Island simulation.

How the model works

l  Trees grow; we cut them down because of demand for Timber and sell the logs.

l  The mountain bike visits depend on previous experience and suggestions.

l  Previous experience and suggestions depend on the number of trees compared to visitors and adventure number of trees and users. Park capacity limits the number of mountain bike trail users.

l  The employment opportunity depends on the mountain bike demand and demand for Timber.

Interesting Insights

Mountain biking appears to be unaffected by heavy logging. The visitor experience and numbers are improved by reducing park capacity. The main issue is that any success with the mountain bike park increases visitor numbers. A high timber price is also required to balance the park's popularity. Mountain biking appears to require only a narrow corridor; that is, single-track mountain bike trails are enough. The employment is a measure of the economic acting, a recession or growth trends.

2 months ago
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Model created by Scott Fortmann-Roe.  This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
Model created by Scott Fortmann-Roe.  This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of bison and wolf populations at Yellowstone National Park.
This model illustrates predator prey interactions using real-life data of bison and wolf populations at Yellowstone National Park.


A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem. Changes to original: removal of non-connected variables to simplify view for middle school students. 
A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem. Changes to original: removal of non-connected variables to simplify view for middle school students. 
3 months ago
This model illustrates predator prey interactions using real-life data of fox and rabbit populations.
This model illustrates predator prey interactions using real-life data of fox and rabbit populations.
  ​S-Curve + Delay for Bell Curve Showing Erlang Distribution      Generation of Bell Curve from Initial Market through Delay in Pickup of Customers     This provides the beginning of an Erlang distribution model      The  Erlang distribution  is a two parameter family of continuous  probability dis
​S-Curve + Delay for Bell Curve Showing Erlang Distribution

Generation of Bell Curve from Initial Market through Delay in Pickup of Customers

This provides the beginning of an Erlang distribution model

The Erlang distribution is a two parameter family of continuous probability distributions with support . The two parameters are:

  • a positive integer 'shape' 
  • a positive real 'rate' ; sometimes the scale , the inverse of the rate is used.

    Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly int

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system.  The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926).  Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them.  Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined.  Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed.  Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey.  It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature.  And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.