Marketing Insights into Big Data Models

These models and simulations have been tagged “Marketing Insights into Big Data”.

  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
There is a concern that Logging has an adverse effect on the experience of tourist mountain bikers looking for nature experiences in Derby, Tasmaina.    This model helps give more insight on the relationship between the forest industry and mountain tourism, showing that despite the changes and incre
There is a concern that Logging has an adverse effect on the experience of tourist mountain bikers looking for nature experiences in Derby, Tasmaina.

This model helps give more insight on the relationship between the forest industry and mountain tourism, showing that despite the changes and increase in logging activities with the aim of generating more income from timber, there can be a balance between mountain tourism and the forest industry.
  Overview     This model simulates logging and mountain biking competition in Derby, Tasmania. The Simulation is referenced to simulate Derby mountain biking with logging.      Model   W  ork     The tourism industry is represented on the model's left side, and the logging industry is on the right

Overview

This model simulates logging and mountain biking competition in Derby, Tasmania. The Simulation is referenced to simulate Derby mountain biking with logging.

 

Model Work

The tourism industry is represented on the model's left side, and the logging industry is on the right side. Interactions between these two industries generate tax revenues. Logging and tourism have different growth rates regarding people working/consuming. The initial values of these two industries in the model are not fixed but increase yearly due to inflation or economic growth.

 

Detail Insights

From the perspective of tourism, as the number of tourists keeps growing, the number of people who choose to ride in Derby City also gradually increases. And the people who ride rate the ride. The negative feedback feeds back into the cycling population. Similarly, positive cycling reviews lead to more customer visits. And all the customers will create a revenue through tourism, and a certain proportion of the income will become tourism tax.

From a logging perspective, it is very similar to the tourism industry. As the number of people working in the industry is forecast to increase, the industry's overall size is predicted to grow. And as the industry's size continues to rise, the taxes on the logging industry will also continue to rise. Since logging is an industry, the tax contribution will be more significant than the tourism excise tax.

 

This model assumption is illustrated below:

1. The amount of tax reflects the level of industrial development.

2. The goal of reducing carbon emissions lets us always pay attention to the environmental damage caused by the logging industry.

3. The government's regulatory goal is to increase overall income while ensuring the environment.

4. Logging will lead to environmental damage, which will decrease the number of tourists.

 

This model is based on tourism tax revenue versus logging tax revenue. Tourism tax revenue is more incredible than logging tax revenue, indicating a better environment. As a result of government policy, the logging industry will be heavily developed in the short term. Growth in the logging industry will increase by 40%. A growth rate of 0.8 and 0.6 of the original is obtained when logging taxes are 2 and 4 times higher than tourism taxes.

 

Furthermore, tourism tax and logging tax also act on the positive rate, which is the probability that customers give a positive evaluation. The over-development of the logging industry will lead to the destruction of environmental resources and further affect the tourism industry. The logging tax will also affect the tourism Ride Rate, which is the probability that all tourism customers will choose Derby city.

 

This model more accurately reflects logging and tourism's natural growth and ties the two industries together environmentally. Two ways of development are evident in the two industries. Compared to tourism, logging shows an upward spiral influenced by government policies. Government attitudes also affect tourism revenue, but more by the logging industry. 

  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
 The model simulates the comparison between mountain biking industry and forestry/logging in Derby Tasmania.     How the model works  On the left-hand side, Derby Mountain biking, tourists visit the mountain according to reviews and recommendation of mountain scenery and entertainment activities. Th
The model simulates the comparison between mountain biking industry and forestry/logging in Derby Tasmania.

How the model works
On the left-hand side, Derby Mountain biking, tourists visit the mountain according to reviews and recommendation of mountain scenery and entertainment activities. The number of people who hire bikes and who choose to dine on the mountain are limited by bike availability. Both bike hiring and biker dining contribute to tourist revenue in Derby. On the right-hand side, forest trees grow at certain rates, but are negatively affected by timber demand. Timber logging generate revenue, which depends on sale price and associated cost.

Interesting insights
Although forestry contributes more revenue in a certain time, it seems that Derby Mountain bike generate more tourist revenue from dining services and bike hiring in a long term.

 Mountain Bike riding versus logging in Derby, Tasmania.      This is a model that shows logging vs adventure tourism in Derby.  Derby is on the north-east of Tasmania and is a small town that is known for it's beautiful forestry, scenery and more recently it's mountain bike trials. Due to dense for
Mountain Bike riding versus logging in Derby, Tasmania. 

This is a model that shows logging vs adventure tourism in Derby.
Derby is on the north-east of Tasmania and is a small town that is known for it's beautiful forestry, scenery and more recently it's mountain bike trials. Due to dense forestry it also means the Derby is known for logging within the same area. 
This has meant competing priorities have emerged between mountain bike riding on their world famous mountain bike trails and logging on the same trials impacting both sides. The impact of noise from machinery and interrupted views has meant some dissatisfaction in tourism and will decrease tourism numbers in the area. An increase in adventure tourism can detract from logging as well, which until more trails opened in Derby Forestry had the most impact the local economy. Most of the logging goes towards high-quality products such as tas oak furniture which also has a high demand. 
This model shows that logging and mountain bike riding in Derby can co-exist. As the demand for the mountain bike Derby and park capacity increases the adventure tourism decreases as less people will want to visit Derby for mountain biking if over crowded. As both create revenue for the economy it is important that they co-exist and logging can be contained to certain areas away from mountain biking.  

  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
  Overview     This model simulates logging and mountain biking competition in Derby, Tasmania. The Simulation is referenced to simulate Derby mountain biking with logging.      Model   W  ork     The tourism industry is represented on the model's left side, and the logging industry is on the right

Overview

This model simulates logging and mountain biking competition in Derby, Tasmania. The Simulation is referenced to simulate Derby mountain biking with logging.

 

Model Work

The tourism industry is represented on the model's left side, and the logging industry is on the right side. Interactions between these two industries generate tax revenues. Logging and tourism have different growth rates regarding people working/consuming. The initial values of these two industries in the model are not fixed but increase yearly due to inflation or economic growth.

 

Detail Insights

From the perspective of tourism, as the number of tourists keeps growing, the number of people who choose to ride in Derby City also gradually increases. And the people who ride rate the ride. The negative feedback feeds back into the cycling population. Similarly, positive cycling reviews lead to more customer visits. And all the customers will create a revenue through tourism, and a certain proportion of the income will become tourism tax.

From a logging perspective, it is very similar to the tourism industry. As the number of people working in the industry is forecast to increase, the industry's overall size is predicted to grow. And as the industry's size continues to rise, the taxes on the logging industry will also continue to rise. Since logging is an industry, the tax contribution will be more significant than the tourism excise tax.

 

This model assumption is illustrated below:

1. The amount of tax reflects the level of industrial development.

2. The goal of reducing carbon emissions lets us always pay attention to the environmental damage caused by the logging industry.

3. The government's regulatory goal is to increase overall income while ensuring the environment.

4. Logging will lead to environmental damage, which will decrease the number of tourists.

 

This model is based on tourism tax revenue versus logging tax revenue. Tourism tax revenue is more incredible than logging tax revenue, indicating a better environment. As a result of government policy, the logging industry will be heavily developed in the short term. Growth in the logging industry will increase by 40%. A growth rate of 0.8 and 0.6 of the original is obtained when logging taxes are 2 and 4 times higher than tourism taxes.

 

Furthermore, tourism tax and logging tax also act on the positive rate, which is the probability that customers give a positive evaluation. The over-development of the logging industry will lead to the destruction of environmental resources and further affect the tourism industry. The logging tax will also affect the tourism Ride Rate, which is the probability that all tourism customers will choose Derby city.

 

This model more accurately reflects logging and tourism's natural growth and ties the two industries together environmentally. Two ways of development are evident in the two industries. Compared to tourism, logging shows an upward spiral influenced by government policies. Government attitudes also affect tourism revenue, but more by the logging industry. 

Overview This model is a working simulation of the competition between the mountain biking tourism industry versus the forestry logging within Derby Tasmania.    How the model works  The left side of the model highlights the mountain bike flow beginning with demand for the forest that leads to incre
Overview
This model is a working simulation of the competition between the mountain biking tourism industry versus the forestry logging within Derby Tasmania.

How the model works
The left side of the model highlights the mountain bike flow beginning with demand for the forest that leads to increased visitors using the forest of mountain biking. Accompanying variables effect the tourism income that flows from use of the bike trails.
On the right side, the forest flow begins with tree growth then a demand for timber leading to the logging production. The sales from the logging then lead to the forestry income.
The model works by identifying how the different variables interact with both mountain biking and logging. As illustrated there are variables that have a shared effect such as scenery and adventure and entertainment.

Variables
The variables are essential in understanding what drives the flow within the model. For example mountain biking demand is dependent on positive word mouth which in turn is dependent on scenery. This is an important factor as logging has a negative impact on how the scenery changes as logging deteriorates the landscape and therefore effects positive word of mouth.
By establishing variables and their relationships with each other, the model highlights exactly how mountain biking and forestry logging effect each other and the income it supports.

Interesting Insights
The model suggests that though there is some impact from logging, tourism still prospers in spite of negative impacts to the scenery with tourism increasing substantially over forestry income. There is also a point at which the visitor population increases exponentially at which most other variables including adventure and entertainment also increase in result. The model suggests that it may be possible for logging and mountain biking to happen simultaneously without negatively impacting on the tourism income.
 Overview 

 A model which simulates the competition between logging versus adventure
tourism (mountain bike ridding) in Derby Tasmania.  

  
How the model works: 

 Trees grow, and we cut them down because of the demand for Timber and
sell the logs. Mountain bikers and holiday visitors will come t

Overview

A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania. 


How the model works:

Trees grow, and we cut them down because of the demand for Timber and sell the logs. Mountain bikers and holiday visitors will come to the park and this depends on experience and recommendations.  Past experience and recommendations depend on the Scenery, number of trees compared to the visitor and Adventure number of trees and users.  Park capacity limits the number of users.  To utilize highest park capacity, they need to promote to the holiday visitor segment as well. Again, the visit depends on the scenery. So, both mountain biking and forestry (logging) businesses need to contribute a significant amount of revenue to CSR for faster regrowth of trees.


Interesting insights

It looks like a lot of logging doesn't stop people from mountain biking. 

Faster replantation of the tree will balance out the impact created by logging which will give the visitor a positive experience and the number of visitors is both improved. 

To keep the park's popularity in check, the price of wood needs to be high. 

Also, it looks like mountain biking only needs a narrow path.

CSR contribution to nature can be a crucial factor. 

  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
Overview This model is a working simulation of the competition between the mountain biking tourism industry versus the forestry logging within Derby Tasmania.    How the model works  The left side of the model highlights the mountain bike flow beginning with demand for the forest that leads to incre
Overview
This model is a working simulation of the competition between the mountain biking tourism industry versus the forestry logging within Derby Tasmania.

How the model works
The left side of the model highlights the mountain bike flow beginning with demand for the forest that leads to increased visitors using the forest of mountain biking. Accompanying variables effect the tourism income that flows from use of the bike trails.
On the right side, the forest flow begins with tree growth then a demand for timber leading to the logging production. The sales from the logging then lead to the forestry income.
The model works by identifying how the different variables interact with both mountain biking and logging. As illustrated there are variables that have a shared effect such as scenery and adventure and entertainment.

Variables
The variables are essential in understanding what drives the flow within the model. For example mountain biking demand is dependent on positive word mouth which in turn is dependent on scenery. This is an important factor as logging has a negative impact on how the scenery changes as logging deteriorates the landscape and therefore effects positive word of mouth.
By establishing variables and their relationships with each other, the model highlights exactly how mountain biking and forestry logging effect each other and the income it supports.

Interesting Insights
The model suggests that though there is some impact from logging, tourism still prospers in spite of negative impacts to the scenery with tourism increasing substantially over forestry income. There is also a point at which the visitor population increases exponentially at which most other variables including adventure and entertainment also increase in result. The model suggests that it may be possible for logging and mountain biking to happen simultaneously without negatively impacting on the tourism income.
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
  Overview  This model which simulates the competition of Logging with Mountain Tourism in Derby, Tasmania.  This main reason of this simulation is to find if logging will affect the mountain tourism and by any chance they can co-exist.    How the model works.   Both Timber harvesting and mountain t
Overview
This model which simulates the competition of Logging with Mountain Tourism in Derby, Tasmania.  This main reason of this simulation is to find if logging will affect the mountain tourism and by any chance they can co-exist.

How the model works.
Both Timber harvesting and mountain tourism can bring the economic contribution to Tasmania. In the Logging industry, it helps increase the need of employment and at the same time logging generate the profit through selling those timbers. In the Mountain Tourism industry, it can get the revenue through couple of ways which include accommodation (approximately 3 days find in paper), Restaurant and parking fee. However, the low growth rate of the trees is not keeping up with the rate of logging, if the trees getting less in Derby mountain, it will affect the sights and the riding experience for tourists, which will affect the satisfaction and expectation as it depends on the sights and experience. The satisfaction and expectation will influence the number of visitors, if they satisfied, they can come again or tell others about the great experience, if not, more and more people will not come again.

Interesting insights
It seems like logging has no significant negative effect to the mountain tourism, compare the forestry income with the tourism income, tourism income gradually higher than the forestry income at last, which means tourism is in a very important position, as long as the visitors are stable, tourism industry can provide greater economic contribution, stakeholders and governments can find the balance by maintain the status or better slightly reduce logging in order to make them co-exist.
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking