Model of mixed-conifer forest biodiversity response to fire and selected treatments
Model of mixed-conifer forest biodiversity response to fire and selected treatments
  Overview  

 It is a model simulating
logging and adventure tourism (mountain bike riding) competition in Derby,
Tasmania. It is a chance for northeast Tasmania to become an exciting, new, world-class
product for the mountain bike tourism industry, which drives local economic
development. 

 Simul

Overview

It is a model simulating logging and adventure tourism (mountain bike riding) competition in Derby, Tasmania. It is a chance for northeast Tasmania to become an exciting, new, world-class product for the mountain bike tourism industry, which drives local economic development.

Simulation borrowed from the Easter Island simulation.

How the model works

l  Trees grow; we cut them down because of demand for Timber and sell the logs.

l  The mountain bike visits depend on previous experience and suggestions.

l  Previous experience and suggestions depend on the number of trees compared to visitors and adventure number of trees and users. Park capacity limits the number of mountain bike trail users.

l  The employment opportunity depends on the mountain bike demand and demand for Timber.

Interesting Insights

Mountain biking appears to be unaffected by heavy logging. The visitor experience and numbers are improved by reducing park capacity. The main issue is that any success with the mountain bike park increases visitor numbers. A high timber price is also required to balance the park's popularity. Mountain biking appears to require only a narrow corridor; that is, single-track mountain bike trails are enough. The employment is a measure of the economic acting, a recession or growth trends.

    Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly int

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system.  The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926).  Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them.  Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined.  Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed.  Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey.  It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature.  And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


This model describes how costs, income and ecosystem services change with stocking rate.
This model describes how costs, income and ecosystem services change with stocking rate.
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems.  Ecology and Society   18 (3): 27.  link
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems. Ecology and Society 18(3): 27. link

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at  https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions  Thanks Scott Fortmann-Roe.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

Systems Zoo model Z308 Forest Dynamics (Bossel, 2007)
Systems Zoo model Z308 Forest Dynamics (Bossel, 2007)
2 months ago
This model illustrates predator prey interactions using real-life data of rabbit and fox populations in Chile Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of rabbit and fox populations in Chile
Experiment with adjusting the initial number of moose and wolves on the island.
Tomado de: Modeling forest succession in a northeast deciduous forest. Modificado para Bosque Subtropical
Tomado de: Modeling forest succession in a northeast deciduous forest.
Modificado para Bosque Subtropical
  ​S-Curve + Delay for Bell Curve Showing Erlang Distribution      Generation of Bell Curve from Initial Market through Delay in Pickup of Customers     This provides the beginning of an Erlang distribution model      The  Erlang distribution  is a two parameter family of continuous  probability dis
​S-Curve + Delay for Bell Curve Showing Erlang Distribution

Generation of Bell Curve from Initial Market through Delay in Pickup of Customers

This provides the beginning of an Erlang distribution model

The Erlang distribution is a two parameter family of continuous probability distributions with support . The two parameters are:

  • a positive integer 'shape' 
  • a positive real 'rate' ; sometimes the scale , the inverse of the rate is used.

This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Interactions between wolves and livestock depending on abundance
Interactions between wolves and livestock depending on abundance
 This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

 Overview:   This simulation will show the relationship between tree logging forestry and how this can affect mountain biking tourism in Derby Park Tasmania. The main goal of this simulation is to show these two industries can co-exist in the same environment, or increase in demand or production in
Overview: 
This simulation will show the relationship between tree logging forestry and how this can affect mountain biking tourism in Derby Park Tasmania. The main goal of this simulation is to show these two industries can co-exist in the same environment, or increase in demand or production in one sector will affect the result of another.  

Function of the model:
In comparison there are both pros and cons for both sectors working correspondently. Demand for derby park is caused by individual past experience when visiting the park or friends recommendation which increase in the number of demands. Increase in demands will increase in the number of visitors. When visitors visits the park they require make a purchase a bike and pay the park for using the park facilities. All this will adds up to bikers total spending when visiting Derby. When consumer spend it is booting the economy especially in the tourism sector. Similarly tree logging will also contribute financially towards the Tasmania economy. The regeneration stage is relatively low compare to the logging rate. The growth will not cover the loss which can cause some level of damage in the scenery of the park, affecting tourist to view when mountain biking. Visitors overall experience will have the impact towards the demand for mountain biking in derby park, if visitors experience is satisfied they will come back to visit again or visit with group of friends, even words of mouth recommendation will also increase the level of demand of visiting Derby. 

Some key insights base on the simulation:
Based on the simulation of the two models we can see there are some key changes.
Tree logging increase will cause the disturbance of the natural scenery, thus change the overall experience of the visitors, decrease in the level of demand. Tree logging will also have negative impact towards the overall tourist experience thus affect the park facility and track. The natural scenery and the overall experience can affect their experience and if they would continue to recommend this area to friends to increase the demand. 

This is a model which explains the difference between Mountain bikes riding compared to logging in the Tasmanian forests.
This is a model which explains the difference between Mountain bikes riding compared to logging in the Tasmanian forests.
This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
Simple dynamic model of species gain and loss from individual trees as patches in the landscape, including removal of surrounding trees and changes in climatic stressors.
Simple dynamic model of species gain and loss from individual trees as patches in the landscape, including removal of surrounding trees and changes in climatic stressors.