Light Models

These models and simulations have been tagged “Light”.

Simple model to illustrate Steele's equation for primary production of phytoplankton.  The equation is:  Ppot = Pmax I/Iopt exp(1-I/Iopt)  Where:  Ppot: Potential production (e.g. d-1, or mg C m-2 d-1) Pmax: Maximum production (same units as Ppot) I: Light energy at depth of interest (e.g. uE m-2 s-
Simple model to illustrate Steele's equation for primary production of phytoplankton.

The equation is:

Ppot = Pmax I/Iopt exp(1-I/Iopt)

Where:

Ppot: Potential production (e.g. d-1, or mg C m-2 d-1)
Pmax: Maximum production (same units as Ppot)
I: Light energy at depth of interest (e.g. uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (same units as I)

The model contains no state variables, just illustrates the rate of production, by making the value of I equal to the timestep (in days). Move the slider to the left for more pronounced photoinhibition, to the right for photosaturation.
This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters. Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters.
Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate Steele's equation for primary production of phytoplankton.  The equation is:  Ppot = Pmax I/Iopt exp(1-I/Iopt)  Where:  Ppot: Potential production (e.g. d-1, or mg C m-2 d-1) Pmax: Maximum production (same units as Ppot) I: Light energy at depth of interest (e.g. uE m-2 s-
Simple model to illustrate Steele's equation for primary production of phytoplankton.

The equation is:

Ppot = Pmax I/Iopt exp(1-I/Iopt)

Where:

Ppot: Potential production (e.g. d-1, or mg C m-2 d-1)
Pmax: Maximum production (same units as Ppot)
I: Light energy at depth of interest (e.g. uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (same units as I)

The model contains no state variables, just illustrates the rate of production, by making the value of I equal to the timestep (in days). Move the slider to the left for more pronounced photoinhibition, to the right for photosaturation.
Simple model to illustrate Steele's equation for primary production of phytoplankton.  The equation is:  Ppot = Pmax I/Iopt exp(1-I/Iopt)  Where:  Ppot: Potential production (e.g. d-1, or mg C m-2 d-1) Pmax: Maximum production (same units as Ppot) I: Light energy at depth of interest (e.g. uE m-2 s-
Simple model to illustrate Steele's equation for primary production of phytoplankton.

The equation is:

Ppot = Pmax I/Iopt exp(1-I/Iopt)

Where:

Ppot: Potential production (e.g. d-1, or mg C m-2 d-1)
Pmax: Maximum production (same units as Ppot)
I: Light energy at depth of interest (e.g. uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (same units as I)

The model contains no state variables, just illustrates the rate of production, by making the value of I equal to the timestep (in days). Move the slider to the left for more pronounced photoinhibition, to the right for photosaturation.
Simple model to illustrate Steele's equation for primary production of phytoplankton.  The equation is:  Ppot = Pmax I/Iopt exp(1-I/Iopt)  Where:  Ppot: Potential production (e.g. d-1, or mg C m-2 d-1) Pmax: Maximum production (same units as Ppot) I: Light energy at depth of interest (e.g. uE m-2 s-
Simple model to illustrate Steele's equation for primary production of phytoplankton.

The equation is:

Ppot = Pmax I/Iopt exp(1-I/Iopt)

Where:

Ppot: Potential production (e.g. d-1, or mg C m-2 d-1)
Pmax: Maximum production (same units as Ppot)
I: Light energy at depth of interest (e.g. uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (same units as I)

The model contains no state variables, just illustrates the rate of production, by making the value of I equal to the timestep (in days). Move the slider to the left for more pronounced photoinhibition, to the right for photosaturation.
Simple model to illustrate Steele's equation for primary production of phytoplankton.  The equation is:  Ppot = Pmax I/Iopt exp(1-I/Iopt)  Where:  Ppot: Potential production (e.g. d-1, or mg C m-2 d-1) Pmax: Maximum production (same units as Ppot) I: Light energy at depth of interest (e.g. uE m-2 s-
Simple model to illustrate Steele's equation for primary production of phytoplankton.

The equation is:

Ppot = Pmax I/Iopt exp(1-I/Iopt)

Where:

Ppot: Potential production (e.g. d-1, or mg C m-2 d-1)
Pmax: Maximum production (same units as Ppot)
I: Light energy at depth of interest (e.g. uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (same units as I)

The model contains no state variables, just illustrates the rate of production, by making the value of I equal to the timestep (in days). Move the slider to the left for more pronounced photoinhibition, to the right for photosaturation.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters. Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters.
Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters. Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters.
Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters. Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters.
Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters. Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters.
Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters. Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
Simple model to illustrate an annual cycle for phytoplankton biomass in temperate waters.
Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.