Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
c) 14 seconden d) dy/dx=vy/vx=-46.4/46.36=/1 --> 45 graden
c) 14 seconden
d) dy/dx=vy/vx=-46.4/46.36=/1 --> 45 graden
 ​Força de arrasto linear referências:      CREF - Velocidade das gotas de chuva. 27 de abril, 2020. É verdade que as gotas de chuva sempre caem com a mesma velocidade devido a gravidade?  Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/   https://www.if.ufrgs.br/novocref/?co
​Força de arrasto linear referências:

CREF - Velocidade das gotas de chuva. 27 de abril, 2020. É verdade que as gotas de chuva sempre caem com a mesma velocidade devido a gravidade? Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/

CREF - Velocidade de pedras de granizo no solo. 22 de outubro, 2015. Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/

 Silveira, F. (2015). Velocidade das pedras de granizo Hailstone speed. https://doi.org/10.13140/RG.2.2.33619.94245

https://www.researchgate.net/publication/339536656_Velocidade_das_pedras_de_granizo_Hailstone_speed


Aula 10 - Velocidade Terminal 

Aerodinâmica da Bola de Futebol: da Copa de 70 à Jabulani Carlos Eduardo Aguiar Programa de Pós-Graduação em Ensino de Física Instituto de Física - UFRJ

Número de Reynolds


Aula 5.2 - Origem física do arrasto linear e quadrático: o número de Reynolds. Mecânica Clássica UFF Prof. Jorge de Sá Martins 

Viscosidade, turbulência e tensão superficial - IF UFRJ
 
Sugestões de Modelagem (Leonardo):

Revista Brasileira de Ensino de Física, vol. 41, nº 3 (2019) É seguro atirar para cima? Uma analise da letalidade de projéteis subsônicos. Saulo Luis Lima da Silva, Herman Fialho Fumiã.

FRENAGEM DE UM PROJÉTIL EM UM MEIO FLUIDO: “QUAL SERIA A DISTÂNCIA, DENTRO DA ÁGUA, PERCORRIDA POR UM PROJÉTIL CALIBRE .50 COM MASSA DE 50 G E VELOCIDADE DE 850 M/S?”  Fernando Lang da Silveira Instituto de Física – UFRGS 


11 months ago
  b) 102,3 s, 2197,6 m   c) richtingscoefficiënt neemt toe, dus snelheid neemt toe, wat betekent dat omstandigheden veranderen. Dit is naast het dalen van rho en verandering van het gewicht, dus Fz  d) als er geen brandstof wordt verbruikt, werkt de motor niet
b) 102,3 s, 2197,6 m
c) richtingscoefficiënt neemt toe, dus snelheid neemt toe, wat betekent dat omstandigheden veranderen. Dit is naast het dalen van rho en verandering van het gewicht, dus Fz
d) als er geen brandstof wordt verbruikt, werkt de motor niet

Connects distance, velocity, and acceleration.
Connects distance, velocity, and acceleration.