Simple example of a 1D falling object, comparing the use of direct equations, with "solving" the differential equation using flows (dQ/dt) and stocks (Q).
Simple example of a 1D falling object, comparing the use of direct equations, with "solving" the differential equation using flows (dQ/dt) and stocks (Q).
Simulation der Umlaufbahn der Erde um die Sonne
Simulation der Umlaufbahn der Erde um die Sonne
 
   HORIZONTAL THROW   IN VACUUM   After a flood, a group of people were left in one area. A rescue plane, flying horizontally at a height of 720 m and maintaining a speed of v = 50m / s, approaches the scene for a packet of medicines and food to be launched to isolated people. How far in the horiz

HORIZONTAL THROW IN VACUUM

After a flood, a group of people were left in one area. A rescue plane, flying horizontally at a height of 720 m and maintaining a speed of v = 50m / s, approaches the scene for a packet of medicines and food to be launched to isolated people. How far in the horizontal direction should the package be dropped so that it falls with people? Disregard air resistance and adopt g = 10m / s².


Source: RAMALHO, NICOLAU AND TOLEDO; Fundamentos de Física, Volume 1, 8th edition, pp. 12 - 169, 2003).

This model may be cloned and modified without prior permission of the authors. Thanks for quoting the source.

Simulation der Umlaufbahn der Erde um die Sonne
Simulation der Umlaufbahn der Erde um die Sonne
 
  Um
corpo é atirado verticalmente para cima, a partir do solo, com uma velocidade
de 20 m/s. Considerando a aceleração gravitacional 9,8 m/s² e
desprezando a resistência do ar, a altura máxima, em metros, alcançada pelo
corpo é?    Fonte: (RAMALHO, NICOLAU E TOLEDO; Fundamentos da Física, Volume

Um corpo é atirado verticalmente para cima, a partir do solo, com uma velocidade de 20 m/s. Considerando a aceleração gravitacional 9,8 m/s² e desprezando a resistência do ar, a altura máxima, em metros, alcançada pelo corpo é? 

Fonte: (RAMALHO, NICOLAU E TOLEDO; Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Movimento Vertical no Vácuo.

Tischtennisball aus 5m Höhe mit und ohne Strömungswiderstand.
Tischtennisball aus 5m Höhe mit und ohne Strömungswiderstand.
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Flugbahn eines Federballs - Simulation und Messung (Tracker Video Analysis and Modeling Tool)
Flugbahn eines Federballs - Simulation und Messung (Tracker Video Analysis and Modeling Tool)
 Modelo matemático para un sistema de bombeo aguas abajo junto con el aprovechamiento de la energía potencial que se presenta en una zona húmeda de baja pendiente, sin ayuda de electricidad solo del fenómeno de la gravedad.     https://es.wikipedia.org/wiki/Golpe_de_ariete      https://en.wikipedia.
Modelo matemático para un sistema de bombeo aguas abajo junto con el aprovechamiento de la energía potencial que se presenta en una zona húmeda de baja pendiente, sin ayuda de electricidad solo del fenómeno de la gravedad.

https://es.wikipedia.org/wiki/Golpe_de_ariete

https://en.wikipedia.org/wiki/Water_hammer

https://pt.wikipedia.org/wiki/Golpe_de_ar%C3%ADete
Le but de cette simulation est de simuler l'évolution de niveau entre deux ou plusieurs réservoirs qui se remplissent l'un l'autre.    Les niveaux se stabilisent vers une valeur asymptotique.    On peut changer la valeur des résistances d'écoulement entre les différents réservoirs, ce qui change les
Le but de cette simulation est de simuler l'évolution de niveau entre deux ou plusieurs réservoirs qui se remplissent l'un l'autre.

Les niveaux se stabilisent vers une valeur asymptotique.

On peut changer la valeur des résistances d'écoulement entre les différents réservoirs, ce qui change les niveaux d'équilibre des réservoirs une fois l'état stationnaire atteint.