System Dynamics Models

These models and simulations have been tagged “System Dynamics”.

Related tagsSterman

 This forecasting model can be used to predict global data center electricity needs, based on understanding usage growth. Please note that the corresponding problem description, model developments, and results are discussed in the following paper:     Koot, M., & Wijnhoven, F. (2021). Usage impa
This forecasting model can be used to predict global data center electricity needs, based on understanding usage growth. Please note that the corresponding problem description, model developments, and results are discussed in the following paper:

Koot, M., & Wijnhoven, F. (2021). Usage impact on data center electricity needs: A system dynamic forecasting model. Applied Energy, 291, 116798. DOI: https://doi.org/10.1016/j.apenergy.2021.116798.
 This forecasting model can be used to predict global data center electricity needs, based on understanding usage growth. Please note that the corresponding problem description, model developments, and results are discussed in the following paper:     Koot, M., & Wijnhoven, F. (2021). Usage impa
This forecasting model can be used to predict global data center electricity needs, based on understanding usage growth. Please note that the corresponding problem description, model developments, and results are discussed in the following paper:

Koot, M., & Wijnhoven, F. (2021). Usage impact on data center electricity needs: A system dynamic forecasting model. Applied Energy, 291, 116798. DOI: https://doi.org/10.1016/j.apenergy.2021.116798.
From Jay Forrester 1988 killian lectures youtube  video  describing system dynamics at MIT. For Concepts See  IM-185226 . For more detailed biography See Jay Forrester memorial  webpage  For MIT HIstory see  IM-184930
From Jay Forrester 1988 killian lectures youtube video describing system dynamics at MIT. For Concepts See IM-185226. For more detailed biography See Jay Forrester memorial webpage For MIT HIstory see IM-184930
A simulation model that shows the relationship between the mountain biking trails in derby and the the effect it has on the tourism, 
A simulation model that shows the relationship between the mountain biking trails in derby and the the effect it has on the tourism, 
This model represents a repair contract to fix a group of houses with unresolved construction defects.
This model represents a repair contract to fix a group of houses with unresolved construction defects.
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
This model simulates the competition between logging versus adventure tourism(mountain bike riding) in Derby Tasmania. The purpose of this model is that focus on the relationship between the timber industry and mountain bike tourism in adventure. It also reflects how well these two industries co-exi
This model simulates the competition between logging versus adventure tourism(mountain bike riding) in Derby Tasmania. The purpose of this model is that focus on the relationship between the timber industry and mountain bike tourism in adventure. It also reflects how well these two industries co-exist. 

How this model works
This model shows tree grow development. In order to maximize the profits from selling the logging, the demand for timbers will increase. 
The mountain bike visits depend on past experience and recommendations. In addition, past experience and recommendations depend on Scenery, which is determined by the number of trees and visitors and adventure number. However, park capacity limits the number of use mountain bikes, because the convince of parking is a consideration for the visitors. 
It seems like the high logging sale does not deter mountain bike activities. By reducing the parking capacity, visitor experience and number are increased. Because of the strong relationship between the mountain bike park and the explosion in visitor numbers. With the improvement in the number of visitors, the number of food and restaurants will go up as well. Because of the daily needs of the visitors. 

From Jay Forrester 1988 killian lectures youtube  video  describing system dynamics at MIT. For more detailed biography See Jay Forrester memorial  webpage  For MIT HIstory see  IM-184930  For Applications se  IM-185462
From Jay Forrester 1988 killian lectures youtube video describing system dynamics at MIT. For more detailed biography See Jay Forrester memorial webpage For MIT HIstory see IM-184930 For Applications se IM-185462
A Conveyor is an infinite order exponential delay.  This insight illustrates how increasing the order of an exponential delay begins to approximate a conveyor.
A Conveyor is an infinite order exponential delay.  This insight illustrates how increasing the order of an exponential delay begins to approximate a conveyor.
A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
An Initial System Dynamics Model for GFS in certain region(s) of Africa
An Initial System Dynamics Model for GFS in certain region(s) of Africa
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
From the 1988 killian lecture youtube  video  For more detailed biography See Jay Forrester memorial  webpage  For concepts and applications see  IM-185226
From the 1988 killian lecture youtube video For more detailed biography See Jay Forrester memorial webpage For concepts and applications see IM-185226
  Problém časové alokace     Semestrální práce      V této simulaci můžeme pozorovat přibližnou dobu na dokončení projektu, který má zadané parametry, jenž ovlivňují dobu jeho dokončení. Zároveň také znázorňuje zjednodušené nabývání znalostí a nárůst (případně pokles) mzdy v poměru se znalostmi.
Problém časové alokace
Semestrální práce

V této simulaci můžeme pozorovat přibližnou dobu na dokončení projektu, který má zadané parametry, jenž ovlivňují dobu jeho dokončení. Zároveň také znázorňuje zjednodušené nabývání znalostí a nárůst (případně pokles) mzdy v poměru se znalostmi.

Celý model obsahuje 3 hladiny - vývojový čas, plat a znalosti vývojářů. Mezi parametry, jenž lze zadávat a jenž ovlivňují celkovou dobu vývoje, patří: počet vývojářů (1 - 10), základní mzda (35.000 - 120.000), termín (1 - 6) a obsáhlost projektu (0.4 - 2).

Celkový počet vývojářů a znalosti vývojářů ovlivňují výslednou mzdu jednotlivých vývojářů. Termín určuje za jak dlouhou dobu si přeje klient projekt dokončen (pravý čas se dozví v simulaci) a obsáhlost projektu představuje o jak velký projekt se jedná.

V simulaci lze pozorovat tři grafy. První porovnává požadovaný čas s reálným časem stráveným na projektu, spolu s křivkou komplexnosti jednotlivých prvků, které se vyskytly během vývoje. Druhý graf nám ukazuje nárůst znalostí aktuálního týmu (tým se znalostí 1 dokonale rozumí dané problematice) a na třetím grafu lze vidět vývoj mzdy vývojářů během projektu (mzda je závislá na znalostech, tedy graf má stejný tvar).
This model (starting with a clone of a previous project on squirrels, mountain lions, and hunters) is a simplified version using only rabbits and snakes.    By modifying the birth and death rates, the variations in population change dramatically. Interestingly, in this iteration, the populations rea
This model (starting with a clone of a previous project on squirrels, mountain lions, and hunters) is a simplified version using only rabbits and snakes.

By modifying the birth and death rates, the variations in population change dramatically. Interestingly, in this iteration, the populations reach dismal lows, but always pick up later. 
Based on model discussed by John D. Sterman (p 508) in  All models are wrong: reflections on becoming a systems scientist  (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flo
Based on model discussed by John D. Sterman (p 508) in All models are wrong: reflections on becoming a systems scientist (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flow connection with a connection from Trig. function.  Repeat (A) & (B).
  Overview    A simple model simulates the conflict between adventure tourism (mountain biking) and logging in Derby, Tasmania. It demonstrates how these industries co-exist and in what circumstances would affect the interests of both parties.       How does the model work?    The demand for mountai

Overview 

A simple model simulates the conflict between adventure tourism (mountain biking) and logging in Derby, Tasmania. It demonstrates how these industries co-exist and in what circumstances would affect the interests of both parties. 


How does the model work? 

The demand for mountain biking came from visitors' enjoyment of nature and desire for scenery. Adventure is driven by the excitement of visitors with their experience and friends' recommendations.  

The demand for timber leads to the amount of logging, and its price per log impacts forest revenue. It brought employment opportunities to the local residents in Derby Mountain. The excessive deforestation affects landscapes and scenery, so regrowth is essential. 


Interesting Insights 

The major rebate is reducing park spaces will degrade visitors' experience of enjoyment with nature. Still, at the same time, logging brings significant business benefits to the local residents.  The environmental effect of being well-managed between mountain bikes and logging needs to be depth-explored and balanced. 

  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
   Overview     This model not only reveals the conflict between proposed logging of adjacent coups and Mountain bike in Derby but also simulates competition between them. The simulation model aims to investigate the potential coexistence opportunities between the mountain biking and forestry and fi

Overview 

This model not only reveals the conflict between proposed logging of adjacent coups and Mountain bike in Derby but also simulates competition between them. The simulation model aims to investigate the potential coexistence opportunities between the mountain biking and forestry and find out the optimal point for coexistence to help improve Tasmania’s economy. 

 

How the model works 

It is recognized that the mountain biking and forestry industries can help support the Tasmanian community and strengthen the Tasmanian economy. The logging and forest sector in Derby can help the local community generate wealth and create more employment opportunities. The sector main source of income come from selling timber such as domestic and export sales. Nevertheless, the sector’s profit has decreased over the past few years on account of the weaker demand and reduced output. Accordingly, the profitability and output of the sector have fluctuated in response to the availability of timber, the timber price movements as well as the impact of changing demand conditions in downstream timber processing sectors. The slow growth rate for a timber has a negative impact on the profitability of the forestry industry and the economic contribution of this industry is set to grow slower, as there is a positive correlation between these variables. In addition, the mountain biking industry in Derby can bring a huge significant economic contribution to the local community. The revenue streams of the industry come from bike rental, accommodation, retail purchase and meals and beverages. These variables also influence the past experience which is positive correlation between reviews and satisfaction that can impact the demand for the mountain biking trails. More importantly, the low regeneration rate for a timber can have a negative impact on the landscape of the mountain biking and the tourist’s past experience that led to a decrease in the demand of tourists for the mountain biking, as the reviews and satisfaction are dependent on the landscape and past experience. It is evident that the industry not only helps the local community generate wealth through industry value addition but also creates a lot of employment opportunities. Therefore, the Mountain Bike Trails can be regarded as sustainable tourism that can help increase employment opportunities and economic contribution that can be of main economic significance to the Tasmania’s economy. Therefore, both industries can co-exist that can maximise the economic contribution to the local community and the Tasmanian economy.


Interesting Insights

It is interesting to note that the activity of cutting down trees does not influence the development of Mountain Biking industry. By lowering the prices of accommodation, food, bike rental and souvenirs, it can help increase the reviews and recommendations of Mountain Biking that will enhance the number of tourists. In this case, the Mountain Biking industry can achieve sustainable economic growth in the long-term while the economic growth rate of forestry industry will continue to decrease.