System Dynamics Models

These models and simulations have been tagged “System Dynamics”.

Related tagsSterman

Ciclo 1 de construcción, consta de Project scope modifications consturction errors y rework
Ciclo 1 de construcción, consta de Project scope modifications consturction errors y rework
This model simulates the competition between logging versus adventure tourism(mountain bike riding) in Derby Tasmania. The purpose of this model is that focus on the relationship between the timber industry and mountain bike tourism in adventure. It also reflects how well these two industries co-exi
This model simulates the competition between logging versus adventure tourism(mountain bike riding) in Derby Tasmania. The purpose of this model is that focus on the relationship between the timber industry and mountain bike tourism in adventure. It also reflects how well these two industries co-exist. 

How this model works
This model shows tree grow development. In order to maximize the profits from selling the logging, the demand for timbers will increase. 
The mountain bike visits depend on past experience and recommendations. In addition, past experience and recommendations depend on Scenery, which is determined by the number of trees and visitors and adventure number. However, park capacity limits the number of use mountain bikes, because the convince of parking is a consideration for the visitors. 
It seems like the high logging sale does not deter mountain bike activities. By reducing the parking capacity, visitor experience and number are increased. Because of the strong relationship between the mountain bike park and the explosion in visitor numbers. With the improvement in the number of visitors, the number of food and restaurants will go up as well. Because of the daily needs of the visitors. 

  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
 This is a system dynamic model to
describe relationship between local logging industry and biking tourism in
Tasmanian Derby Mountain.  In the dynamic model, the left-hand side shows how Derby
get income from local biking tourism. The biking visitors number are influenced
by scenery evaluation whic

This is a system dynamic model to describe relationship between local logging industry and biking tourism in Tasmanian Derby Mountain.

In the dynamic model, the left-hand side shows how Derby get income from local biking tourism. The biking visitors number are influenced by scenery evaluation which depend on local size of forest and influenced government policy support when Biking Tourism income is over 1000 unit. Biking visitors with good recommendation will also back to Mountain Derby and bring income for local in twice or more times.  In the right-hand side, we found the income of logging industry was influenced by local logging growth rate and government policy if local Biking Tourism income is over 1000 unit. The increase of logging industry will also increase local employment which will influence employee cost. This factor will also affect total logging income in Derby Mountain.

 

The simulation results show, with governments support the Biking tourism will increase sharply in the first few years and finally instead local logging industry, at same time bring good environment and save local forest under local increase logging industry. The recommendation graph shows that, the number of good recommendation & bad recommendation for Derby Mountain biking tourism will also increase in high speed in front of few years with data fluctuation but finally maintain in a stable line. Last simulation graph shows that how policy factor influences logging and biking industry. The Government has strong support in local tourism, however, as number of tourists increase, the positive impact from government support will continue decrease. On the contrary, the government support influence will also decease to local logging industry when logging been instead by tourism. 

Based on model discussed by John D. Sterman (p 508) in  All models are wrong: reflections on becoming a systems scientist  (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flo
Based on model discussed by John D. Sterman (p 508) in All models are wrong: reflections on becoming a systems scientist (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flow connection with a connection from Trig. function.  Repeat (A) & (B).
 
   OBLIQUE THROW IN VACUUM   A body is thrown obliquely into the vacuum at an initial velocity of 100 m / s, in a direction that forms with the horizontal an angle x, such that sin (x) = 0.8 and cos (x) = 0.6. Adopting g = 10m / s², determine:  (a) the horizontal and vertical velocity component mo

OBLIQUE THROW IN VACUUM

A body is thrown obliquely into the vacuum at an initial velocity of 100 m / s, in a direction that forms with the horizontal an angle x, such that sin (x) = 0.8 and cos (x) = 0.6. Adopting g = 10m / s², determine:

(a) the horizontal and vertical velocity component modules at the moment of launch;

(b) the instant at which the body reaches the highest point of its trajectory;

c) the maximum height reached by the body;

d) The range of the throw.

Source: RAMALHO, NICOLAU AND TOLEDO; Fundamentos de Física, Volume 1, 8th edition, pp. 12 - 169, 2003.

This model may be cloned and modified without prior permission of the authors. Thanks for quoting the source.

The main scope in this model is seeing how several variables can affect the amounCicl
The main scope in this model is seeing how several variables can affect the amounCicl
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
 
   HORIZONTAL THROW   IN VACUUM   After a flood, a group of people were left in one area. A rescue plane, flying horizontally at a height of 720 m and maintaining a speed of v = 50m / s, approaches the scene for a packet of medicines and food to be launched to isolated people. How far in the horiz

HORIZONTAL THROW IN VACUUM

After a flood, a group of people were left in one area. A rescue plane, flying horizontally at a height of 720 m and maintaining a speed of v = 50m / s, approaches the scene for a packet of medicines and food to be launched to isolated people. How far in the horizontal direction should the package be dropped so that it falls with people? Disregard air resistance and adopt g = 10m / s².


Source: RAMALHO, NICOLAU AND TOLEDO; Fundamentos de Física, Volume 1, 8th edition, pp. 12 - 169, 2003).

This model may be cloned and modified without prior permission of the authors. Thanks for quoting the source.

 This forecasting model can be used to predict global data center electricity needs, based on understanding usage growth. Please note that the corresponding problem description, model developments, and results are discussed in the following paper:     Koot, M., & Wijnhoven, F. (2021). Usage impa
This forecasting model can be used to predict global data center electricity needs, based on understanding usage growth. Please note that the corresponding problem description, model developments, and results are discussed in the following paper:

Koot, M., & Wijnhoven, F. (2021). Usage impact on data center electricity needs: A system dynamic forecasting model. Applied Energy, 291, 116798. DOI: https://doi.org/10.1016/j.apenergy.2021.116798.
Based on model discussed by John D. Sterman (p 508) in  All models are wrong: reflections on becoming a systems scientist  (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flo
Based on model discussed by John D. Sterman (p 508) in All models are wrong: reflections on becoming a systems scientist (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flow connection with a connection from Trig. function.  Repeat (A) & (B).
An Initial System Dynamics Model for GFS in certain region(s) of Africa
An Initial System Dynamics Model for GFS in certain region(s) of Africa
Overview This model is a working simulation of the competition between the mountain biking tourism industry versus the forestry logging within Derby Tasmania.    How the model works  The left side of the model highlights the mountain bike flow beginning with demand for the forest that leads to incre
Overview
This model is a working simulation of the competition between the mountain biking tourism industry versus the forestry logging within Derby Tasmania.

How the model works
The left side of the model highlights the mountain bike flow beginning with demand for the forest that leads to increased visitors using the forest of mountain biking. Accompanying variables effect the tourism income that flows from use of the bike trails.
On the right side, the forest flow begins with tree growth then a demand for timber leading to the logging production. The sales from the logging then lead to the forestry income.
The model works by identifying how the different variables interact with both mountain biking and logging. As illustrated there are variables that have a shared effect such as scenery and adventure and entertainment.

Variables
The variables are essential in understanding what drives the flow within the model. For example mountain biking demand is dependent on positive word mouth which in turn is dependent on scenery. This is an important factor as logging has a negative impact on how the scenery changes as logging deteriorates the landscape and therefore effects positive word of mouth.
By establishing variables and their relationships with each other, the model highlights exactly how mountain biking and forestry logging effect each other and the income it supports.

Interesting Insights
The model suggests that though there is some impact from logging, tourism still prospers in spite of negative impacts to the scenery with tourism increasing substantially over forestry income. There is also a point at which the visitor population increases exponentially at which most other variables including adventure and entertainment also increase in result. The model suggests that it may be possible for logging and mountain biking to happen simultaneously without negatively impacting on the tourism income.
Based on model discussed by John D. Sterman (p 508) in  All models are wrong: reflections on becoming a systems scientist  (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flo
Based on model discussed by John D. Sterman (p 508) in All models are wrong: reflections on becoming a systems scientist (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flow connection with a connection from Trig. function.  Repeat (A) & (B).
10 months ago
  Problém časové alokace     Semestrální práce      V této simulaci můžeme pozorovat přibližnou dobu na dokončení projektu, který má zadané parametry, jenž ovlivňují dobu jeho dokončení. Zároveň také znázorňuje zjednodušené nabývání znalostí a nárůst (případně pokles) mzdy v poměru se znalostmi.
Problém časové alokace
Semestrální práce

V této simulaci můžeme pozorovat přibližnou dobu na dokončení projektu, který má zadané parametry, jenž ovlivňují dobu jeho dokončení. Zároveň také znázorňuje zjednodušené nabývání znalostí a nárůst (případně pokles) mzdy v poměru se znalostmi.

Celý model obsahuje 3 hladiny - vývojový čas, plat a znalosti vývojářů. Mezi parametry, jenž lze zadávat a jenž ovlivňují celkovou dobu vývoje, patří: počet vývojářů (1 - 10), základní mzda (35.000 - 120.000), termín (1 - 6) a obsáhlost projektu (0.4 - 2).

Celkový počet vývojářů a znalosti vývojářů ovlivňují výslednou mzdu jednotlivých vývojářů. Termín určuje za jak dlouhou dobu si přeje klient projekt dokončen (pravý čas se dozví v simulaci) a obsáhlost projektu představuje o jak velký projekt se jedná.

V simulaci lze pozorovat tři grafy. První porovnává požadovaný čas s reálným časem stráveným na projektu, spolu s křivkou komplexnosti jednotlivých prvků, které se vyskytly během vývoje. Druhý graf nám ukazuje nárůst znalostí aktuálního týmu (tým se znalostí 1 dokonale rozumí dané problematice) a na třetím grafu lze vidět vývoj mzdy vývojářů během projektu (mzda je závislá na znalostech, tedy graf má stejný tvar).
   Evolution of Covid-19 in Brazil:  
  A System Dynamics Approach  
 Villela, Paulo (2020) paulo.villela@engenharia.ufjf.br  This model is based on  Crokidakis, Nuno . (2020).  Data analysis and modeling of the evolution of COVID-19 in Brazil . For more details see full paper  here .
Evolution of Covid-19 in Brazil:
A System Dynamics Approach

Villela, Paulo (2020)
paulo.villela@engenharia.ufjf.br

This model is based on Crokidakis, Nuno. (2020). Data analysis and modeling of the evolution of COVID-19 in Brazil. For more details see full paper here.

 Based on a dialogue on the System Dynamics mailing list regarding the current level of acceptance of   System Dynamics   after it has been promoted for over 40 years I dredged up the following set of influences as a thought exercise. This is an example of a   Drifting Goals Systems Archetype  .

Based on a dialogue on the System Dynamics mailing list regarding the current level of acceptance of System Dynamics after it has been promoted for over 40 years I dredged up the following set of influences as a thought exercise. This is an example of a Drifting Goals Systems Archetype.

11 months ago
A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking