New Public Insights

These are recently updated publicly accessible Insights. In addition to public Insights, Insight Maker also supports creating private Insights.

 Simple bathtub model to show the difference between Stock and Flow. Run the model with various values for filling and draining to see the implications.  @ LinkedIn ,  Twitter ,  YouTube

Simple bathtub model to show the difference between Stock and Flow. Run the model with various values for filling and draining to see the implications.

@LinkedInTwitterYouTube

Changing Organization Structures and Behaviours based on Paul Holmstrom's work . Link to CLDs 
Changing Organization Structures and Behaviours based on Paul Holmstrom's work . Link to CLDs 
last week
 This model is a classic instance of an Erlang Queuing Process.     We have the entities:  - A population of cars which start off in a "cruising" state;  - At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to sim
This model is a classic instance of an Erlang Queuing Process.

We have the entities:
- A population of cars which start off in a "cruising" state;
- At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simulate peak hours), some cars transition to a "looking" for an empty space state.
- If a empty space is available (Parking Capacity  > Count(FindState([cars population],[parked]))) then the State transitions to "Parked."
-The Cars stay "parked" according to a Normal distribution with Mean = Duration and SD = Duration / 4
- If the Car is in the state "Looking" for a period longer than "Willingness to Wait" then the state timeouts and transitions to impatient and immediately transitions to "Crusing" again.

The model is set to run for 24 hours and all times are given in hours (or fraction thereof)

WIP:
- Calculate the average waiting time;
- Calculate the servicing level, i.e., 1- (# of cars impatient)/(#cars looking)

A big THANK YOU to Scott Fortmann-Roe for helping setup the model's framework.
This is a simple population model designed to illustrate some of the concepts of stock and flow diagrams and simulation modelling.    The birth fraction and life expectancy are variables and are set as per page 66 of the text. The population is the stock and the births and deaths are the flows.
This is a simple population model designed to illustrate some of the concepts of stock and flow diagrams and simulation modelling.

The birth fraction and life expectancy are variables and are set as per page 66 of the text. The population is the stock and the births and deaths are the flows.