This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
Modelling after Earth, this is a model of the  greenhouse effect  has in increasing the temperature. By trapping some of the radiation emitted by the planet the atmosphere can is itself a positive feedback loop.
Modelling after Earth, this is a model of the greenhouse effect has in increasing the temperature. By trapping some of the radiation emitted by the planet the atmosphere can is itself a positive feedback loop.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
   THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

6 months ago
 The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors. THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST W

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.