This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
   THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER REL

THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

  ​Climate Sector Boundary Diagram By Guy Lakeman    Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)      As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old),
​Climate Sector Boundary Diagram By Guy Lakeman
 Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)

As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old), a simple block of components concerning the health of the planet needs to be broken down into simple blocks.
Perhaps this picture will show the basics on which to vote for a sustained healthy future
Democracy is only as good as the ability of the voters to FULLY understand the implications of the policies on which they vote., both context and the various perspectives.   National voting of unqualified voters on specific policy issues is the sign of corrupt manipulation.

   THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER REL

THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the  greenhouse effect  that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
This simple radiation balance model shows the greenhouse effect that an atmosphere can have in warming a planet.  By trapping some of the radiation emitted by the planet the atmosphere can cause the surface to become warmer than it otherwise would be.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
10 months ago
 The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors. THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST W

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

  ​S-Curve + Delay for Bell Curve Showing Erlang Distribution      Generation of Bell Curve from Initial Market through Delay in Pickup of Customers     This provides the beginning of an Erlang distribution model      The  Erlang distribution  is a two parameter family of continuous  probability dis
​S-Curve + Delay for Bell Curve Showing Erlang Distribution

Generation of Bell Curve from Initial Market through Delay in Pickup of Customers

This provides the beginning of an Erlang distribution model

The Erlang distribution is a two parameter family of continuous probability distributions with support . The two parameters are:

  • a positive integer 'shape' 
  • a positive real 'rate' ; sometimes the scale , the inverse of the rate is used.