Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
This model simulates the economics of buying a home. It was created to compare buying a home against using investment returns to pay for rent. According to Micheal Finke, house prices typically run 20x monthly rental rates.      Try cloning this insight, setting the parameter values for real-world s
This model simulates the economics of buying a home. It was created to compare buying a home against using investment returns to pay for rent. According to Micheal Finke, house prices typically run 20x monthly rental rates. 

Try cloning this insight, setting the parameter values for real-world scenarios, and then running sensitivity analysis (see tools) to determine the likely wealth outcomes. Compare buying a home to renting. Note that each run will keep the parameters the same while simulating market volatility.

version 1.9
 The L ogistic Map  is a polynomial mapping (equivalently,  recurrence relation ) of  degree 2 , often cited as an archetypal example of how complex,  chaotic  behaviour can arise from very simple  non-linear  dynamical equations. The map was popularized in a seminal 1976 paper by the biologist  Rob

The Logistic Map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by Pierre François Verhulst

Mathematically, the logistic map is written

where:

 is a number between zero and one, and represents the ratio of existing population to the maximum possible population at year n, and hence x0 represents the initial ratio of population to max. population (at year 0)r is a positive number, and represents a combined rate for reproduction and starvation. To generate a bifurcation diagram, set 'r base' to 2 and 'r ramp' to 1
To demonstrate sensitivity to initial conditions, try two runs with 'r base' set to 3 and 'Initial X' of 0.5 and 0.501, then look at first ~20 time steps

The housing market is heavily dependent on two main factors; supply and demand. Both play a major role in determining an equilibrium price for both sellers and buyers in the real estate market.     Residents, or the general population of individuals, place significant reliance on financial instituti
The housing market is heavily dependent on two main factors; supply and demand. Both play a major role in determining an equilibrium price for both sellers and buyers in the real estate market. 

Residents, or the general population of individuals, place significant reliance on financial institutions to provide sources of capital i.e mortgages, to fund their purchases of homes. The rate of interest charged by these organisations in turn gives buyers (consumers) purchasing power, creating demand. 

Supply is made up of the number of houses in the market, and consequently, of these, the number of houses which are up for sale. As the prices of houses for sale increases, the demand for purchase of these properties decreases. Conversely, the lower price, the higher the demand. Once the market reaches an equilibrium point, to which buyers and sellers form an agreement, houses are sold accordingly. An underlying factor to consider is the cost of construction, which impacts producers, or suppliers in this instance, and thus the number of homes for sale, and the expected profit sellers hope to achieve. 

The simulated graph highlights the common scenario within the housing market, to which we see that as price increases, the total number for houses for sale decreases, generating an opposite slope to the price. As the price for houses increases, the demand for the houses decreases and vice versa. The equilibrium is evident at time 14 whereby the price of houses and the number of houses for sale overlaps which in turn creates a market to which both buyers and sellers are happy.
Simple tragedy ​of the commons behavior model.
Simple tragedy ​of the commons behavior model.
From Schluter et al 2017  article  A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017  video .   See also Balke and Gilbert 2014 JASSS  article  How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017  article  A framework for mapping and comparing behavioural theories in models of social-ecological systems   See also Balke and Gilbert 2014 JASSS  article  How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
This Insight is used for simulating growth of a company with specified parameters.
This Insight is used for simulating growth of a company with specified parameters.
 Adam Smith's The Invisible Hand: The Feedback Structure of Markets. From Sterman JD Business Dynamics p170 Fig 5-26. A price-mediated resource allocation system..

Adam Smith's The Invisible Hand: The Feedback Structure of Markets. From Sterman JD Business Dynamics p170 Fig 5-26. A price-mediated resource allocation system..

The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5. The equation for DeltaN is a version of  Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj  the maximum population is set to be one million, and the growth rate constant mu
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.
The equation for DeltaN is a version of 
Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3.
 
Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.
Simulating Hyperinflation for 3650 days.  If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here,
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.