This is a model for the mass flow of phosphorus in a stream called "Ljurabäck" in Norrköping during two months. The stream flows from a lake called "Glan" to a large stream called "Motala Ström".     The model uses daily water flow values and a gradually decreasing P concentration in the lake.
This is a model for the mass flow of phosphorus in a stream called "Ljurabäck" in Norrköping during two months. The stream flows from a lake called "Glan" to a large stream called "Motala Ström". 

The model uses daily water flow values and a gradually decreasing P concentration in the lake.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.  It illustrates a number of interesting features including the coupling of three state variables in a
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.  The equation is:  P = Ppot S / (Ks + S)  Where:  P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1) Ppot: Potential production (same units as P) S: Nutrient concentation (e.g. umol N L-1) Ks: Half sat
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.

The equation is:

P = Ppot S / (Ks + S)

Where:

P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)

The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?


Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


 This insight displays some of the main factors effecting the decreasing koala population in South East Queensland, the measures put in place to stop their extinction, and the possible measures that could be taken to further help the conservation effort.

This insight displays some of the main factors effecting the decreasing koala population in South East Queensland, the measures put in place to stop their extinction, and the possible measures that could be taken to further help the conservation effort.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Eastern oyster growth model calibrated for Long Island Sound  This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)  1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;
Eastern oyster growth model calibrated for Long Island Sound

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
 Interplay between wolves eating sheep and farmers killing wolves.

Interplay between wolves eating sheep and farmers killing wolves.

This model provides a dynamic simulation of the Sverdrup (1953) paper on the vernal blooming of phytoplankton.  The model simulates the dynamics of the mixed layer over the year, and illustrates how it's depth variation leads to conditions that trigger the spring bloom. In order for the bloom to occ
This model provides a dynamic simulation of the Sverdrup (1953) paper on the vernal blooming of phytoplankton.

The model simulates the dynamics of the mixed layer over the year, and illustrates how it's depth variation leads to conditions that trigger the spring bloom. In order for the bloom to occur, production of algae in the water column must exceed respiration.

This can only occur if vertical mixing cannot transport algae into deeper, darker water, for long periods, where they are unable to grow.

Sverdrup, H.U., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Int. Exp. Mer, 18: 287-295
This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
Simple energy balance model of a planet with albedo, ocean, and atmosphere.  This simulation models the stock and flow of energy between a
star, a planet’s surface (primarily its oceans, which are the largest reservoir
of heat), and space.The assumptions governing this model are:  1. The planet abso
Simple energy balance model of a planet with albedo, ocean, and atmosphere.

This simulation models the stock and flow of energy between a star, a planet’s surface (primarily its oceans, which are the largest reservoir of heat), and space.The assumptions governing this model are:

1. The planet absorbs a fraction of the shortwave radiation arriving from its star, with that fraction given by (1-A), where A is albedo. 

2. The planet radiates longwave infrared radiation into space, with the amount of radiation into space given by σΤe4, where σ is the Stefan-Boltzmann constant and Te is the temperature of the effective radiating level.

3. The atmospheric lapse rate is 6 K/km.

4. If there is an imbalance between shortwave radiation absorbed and longwave radiation emitted, the imbalance affects the temperature of the planet. However, it does not do so instantaneously – the imbalance must heat or cool the mixed layer of the ocean.

5. At the start of the simulation, the planet is extremely close to equilibrium given its default parameters. If any of these parameters are changed, the planet will be out of equilibrium, and will have to adjust.