This story contains a conceptual model of phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow in

This story contains a conceptual model of phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow involves a loss from the stock at which it starts and an addition to the stock at which it ends.

The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
This is to support a discussion on money flows and growth. Money as a lubricant for the flow of embodied energy in human systems. See also A Prosperous Way Down  website
This is to support a discussion on money flows and growth. Money as a lubricant for the flow of embodied energy in human systems.
See also A Prosperous Way Down website
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.  The equation is:  P = Ppot S / (Ks + S)  Where:  P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1) Ppot: Potential production (same units as P) S: Nutrient concentation (e.g. umol N L-1) Ks: Half sat
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.

The equation is:

P = Ppot S / (Ks + S)

Where:

P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)

The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunb
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

 
 Adapted from Fig 13.1 p.523 of the Book: James A. Forte ( 2007),  Human Behavior and The Social Environment: Models, Metaphors and Maps for Applying Theoretical Perspectives to Practice   Thomson Brooks/Cole Belmont ISBN 0-495-00659-9

Adapted from Fig 13.1 p.523 of the Book: James A. Forte ( 2007), Human Behavior and The Social Environment: Models, Metaphors and Maps for Applying Theoretical Perspectives to Practice  Thomson Brooks/Cole Belmont ISBN 0-495-00659-9

11 months ago
From Schluter et al 2017  article  A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017  video .   See also Balke and Gilbert 2014 JASSS  article  How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
11 12 months ago
This model represents a broad overview of the hydrological system of Lake Okeechobee and its surrounding areas of SWFL.
This model represents a broad overview of the hydrological system of Lake Okeechobee and its surrounding areas of SWFL.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
This is my basic simulation of the studley Park landfill in Tobago. I was trying to estimate the remaining life in the landfill. I also tied it into littering and pollution rates
This is my basic simulation of the studley Park landfill in Tobago. I was trying to estimate the remaining life in the landfill. I also tied it into littering and pollution rates
 This insight displays some of the main factors effecting the decreasing koala population in South East Queensland, the measures put in place to stop their extinction, and the possible measures that could be taken to further help the conservation effort.

This insight displays some of the main factors effecting the decreasing koala population in South East Queensland, the measures put in place to stop their extinction, and the possible measures that could be taken to further help the conservation effort.
The Streeter-Phelps oxygen dynamics model was originally developed in 1925, almost a century ago.  Play  You can explore the model by hitting the simulate button, and you can use the three sliders below to (i) switch the spill on or off (1 or 0); (ii) define the day when the spill occurs (0 to 15);
The Streeter-Phelps oxygen dynamics model was originally developed in 1925, almost a century ago.

Play

You can explore the model by hitting the simulate button, and you can use the three sliders below to (i) switch the spill on or off (1 or 0); (ii) define the day when the spill occurs (0 to 15); and (iii) make the model use a constant water temperature (20oC) or a (pre-defined) variable one.

A variable temperature affects oxygen saturation, and therefore also the oxygen deficit and oxygen concentration.

Every model element shows an = sign when you hover over it, and if you click the sign you can view the underlying equation.

If you want to edit the model, you need to create an account in InsightMaker and then clone the model and adapt it to your needs.

Study

Below is a detailed explanation of the model concept.

The model calculates the oxygen deficit (D), defined as Cs-C, where Cs is the saturation concentration of dissolved oxygen (based on temperature, and salinity if applicable), and C is the dissolved oxygen concentration.

Since D = Cs-C, it follows that:
dD/dt = -dC/dt

The rate of change of oxygen concentration with time (dC/dt) depends on two factors, organic decomposition and aeration.

dC/dt = Ka.D - Kd.L

The first term on the right side of the equation is aeration (which adds oxygen to the water), calculated by means of the temperature-dependent aeration parameter Ka.

Ka is also a function of Kr, which depends on wind speed (U) and water depth (z).

The sink term represents oxygen consumption through mineralization (bacterial decomposition) of organic matter.

The organic load L decays in time (or in space, e.g. along a river) according to a first order equation, i.e. dL/dt = -Kd.L

This equation can be integrated to yield L = Lo.exp(Kd.t), where Kd is the decay constant.
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.  It illustrates a number of interesting features including the coupling of three state variables in a
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Phoenix only.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.  The equation is:  P = Ppot S / (Ks + S)  Where:  P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1) Ppot: Potential production (same units as P) S: Nutrient concentation (e.g. umol N L-1) Ks: Half sat
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.

The equation is:

P = Ppot S / (Ks + S)

Where:

P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)

The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.