Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
30 7 months ago
This is an introductory conceptual model that introduces key concepts in the management of lakes subject to nutrient inputs from human activity.
This is an introductory conceptual model that introduces key concepts in the management of lakes subject to nutrient inputs from human activity.
Fertilizer inflow can cause lake eutrophication. In this simulation, we are studying what happens in a simple lake ecosystem.
Fertilizer inflow can cause lake eutrophication. In this simulation, we are studying what happens in a simple lake ecosystem.
This stock and flow diagram provides a broad description of the key nutrient pathways (N and P) that exist in a dune-lake system subject to external loadings emanating from intensive agriculture.
This stock and flow diagram provides a broad description of the key nutrient pathways (N and P) that exist in a dune-lake system subject to external loadings emanating from intensive agriculture.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.  This version adds diagenesis, using an extra state variable (ph
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.

This version adds diagenesis, using an extra state variable (phosphorus in the sediment) and incorporates desorption processes that release phosphorus trapped in the sediment back to the water column.

The temporal dynamics of the model simulate the typical development of pollution in time.

1. Low loading, low P concentration in lake
2. High loading, increasing P concentration in lake
3. Desorption rate is low, P in sediment increases
4. Measures implemented for source control, loading reduces
5. P in lake gradually decreases, but below a certain point, desorption increases, and lake P concentration does not improve
6. Recovery only occurs when the secondary load in the sediment is strongly reduced.
This diagram provides an accessible description of the key processes that guide the water quality within a lake.
This diagram provides an accessible description of the key processes that guide the water quality within a lake.
  This is a simple mass balance model simulating the lake's nutrient dynamics in Lake Tai over time and it's removal of phosphorous saturation.     Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout
This is a simple mass balance model simulating the lake's nutrient dynamics in Lake Tai over time and it's removal of phosphorous saturation.

Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.        Ecocity model , Joanna       http://www.divaportal.se/sm
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.


Ecocity model , Joanna 

This diagram provides an accessible description of the key processes that influence the water quality within a lake.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
This is an introductory model that presents key concepts in the management of lakes subject to nutrient inputs from human activity.
This is an introductory model that presents key concepts in the management of lakes subject to nutrient inputs from human activity.
 Clone pannirbrof Biogas to Energy | Insight Maker  https://insightmaker.com/insight/114792/Clone-pannirbrof-Biogas-to-Energy   Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus conce
Clone pannirbrof Biogas to Energy | Insight Maker https://insightmaker.com/insight/114792/Clone-pannirbrof-Biogas-to-Energy 
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.


Ecocity model , Joanna 

Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
This diagram describes the key processes that influence the water quality within a Northland lake.
This diagram describes the key processes that influence the water quality within a Northland lake.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.

This diagram provides a stylised description of important feedbacks within a shallow-lake system.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.

Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.     Mahinga Kai
This diagram provides a stylised description of important feedbacks within a shallow-lake system.
Mahinga Kai