Lake Models

These models and simulations have been tagged “Lake”.

Related tagsEnvironment

This is an introductory conceptual model that introduces key concepts in the management of lakes subject to nutrient inputs from human activity.
This is an introductory conceptual model that introduces key concepts in the management of lakes subject to nutrient inputs from human activity.
 This model describes the key processes that influence the water level within Lake Okeechobee.
This model describes the key processes that influence the water level within Lake Okeechobee.
This stock and flow diagram provides a broad description of the key nutrient pathways (N and P) that exist in a dune-lake system subject to external loadings emanating from intensive agriculture.
This stock and flow diagram provides a broad description of the key nutrient pathways (N and P) that exist in a dune-lake system subject to external loadings emanating from intensive agriculture.
This diagram provides an accessible description of the key processes that guide the water quality within a lake.
This diagram provides an accessible description of the key processes that guide the water quality within a lake.
This is an introductory model that presents key concepts in the management of lakes subject to nutrient inputs from human activity.
This is an introductory model that presents key concepts in the management of lakes subject to nutrient inputs from human activity.
Simulation of the water balance for the Bracciano Lake
Simulation of the water balance for the Bracciano Lake
 This story contains a conceptual model of phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow in

This story contains a conceptual model of phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow involves a loss from the stock at which it starts and an addition to the stock at which it ends.

 This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

 This story presents a conceptual model of nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow invo

This story presents a conceptual model of nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow involves a loss from the stock at which it starts and an addition to the stock at which it ends.

This diagram describes the key processes that influence the water quality within a Northland lake.
This diagram describes the key processes that influence the water quality within a Northland lake.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
 This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This model illustrates the key processes that influence the water level within Lake Okeechobee.        References:     Southwest Florida Water Management District. (2020). Lake Okeechobee. Retrieved from https://apps.sfwmd.gov/sitestatus/     United States Geological Survey. (2020). USGS Water-Year
This model illustrates the key processes that influence the water level within Lake Okeechobee.


References:

Southwest Florida Water Management District. (2020). Lake Okeechobee. Retrieved from https://apps.sfwmd.gov/sitestatus/

United States Geological Survey. (2020). USGS Water-Year Summary for Site USGS 02276400. Retrieved from https://nwis.waterdata.usgs.gov/nwis/wys_rpt?dv_ts_ids=210619&wys_water_yr=2019&site_no=02276400&agency_cd=USGS&adr_water_years=2006%2C2007%2C2008%2C2009%2C2010%2C2011%2C2012%2C2013%2C2014%2C2015%2C2016%2C2017%2C2018%2C2019&referred_module=

Winchester, J. (2020, October 10). Water releases from Lake Okeechobee to begin next week. Retrieved from https://www.winknews.com/2020/10/09/water-releases-from-lake-okeechobee-to-begin-next-week/


Created By:

Roger Al-Bahou
Carlos Alvarez
Christina Burgess
Devin Hanley
Daniel Harper
Simulation of the water balance for the Bracciano Lake. Data from 1994 to 2003 January. Added run off and soil capacity
Simulation of the water balance for the Bracciano Lake. Data from 1994 to 2003 January.
Added run off and soil capacity
 This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and

This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and add to the stock at which they end.

 This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

 This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and

This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and add to the stock at which they end.

This diagram provides an accessible description of the key processes that influence the water quality within a lake.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
 This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

 This model describes phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows involve a loss from the stock at which

This model describes phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows involve a loss from the stock at which they start and add to the stock at which they end.

 This model describes phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows involve a loss from the stock at which

This model describes phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows involve a loss from the stock at which they start and add to the stock at which they end.

This is an introductory conceptual model that introduces key concepts in the management of lakes subject to nutrient inputs from human activity.
This is an introductory conceptual model that introduces key concepts in the management of lakes subject to nutrient inputs from human activity.