Your browser (Internet Explorer 8 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.

X

Menu

Phytoplankton

NPD model (Nutrients, Phytoplankton, Detritus)

Joao G. Ferreira
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.

Environment Primary Production Phytoplankton Biogeochemistry Ocean

  • 2 years 10 months ago

Simple phytoplankton and oyster model

Joao G. Ferreira
Very simple model demonstrating growth of phytoplankton using Steele's equation for potential production and Michaelis-Menten equation for nutrient limitation.

Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.

The phytoplankton model approximately reproduces the spring-summer diatom bloom and the (smaller) late summer dinoflagellate bloom.
 
Oyster growth is modelled only as a throughput from algae. Further developments would include filtration as a function of oyster biomass, oyster mortality, and other adjustments.

Environment Phytoplankton Shellfish

  • 1 year 10 months ago

Clone of Oyster Growth based on Phytoplankton Biomass

Andre Freitas
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


Environment Phytoplankton Primary Production Bivalves Growth

  • 3 years 8 months ago

Clone of NPD model (Nutrients, Phytoplankton, Detritus)

Francisco Xavier
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.

Environment Primary Production Phytoplankton Biogeochemistry Ocean

  • 3 years 6 months ago

Phytoplankton blooms in estuaries

Joao G. Ferreira
This model implements the equations proposed by Ketchum in 1954. The rationale behind the concept is that only phytoplankton that grows above a certain rate will not be flushed out of an estuary.

For biological processes:

Pt  =  Po exp(kt)

Where Pt is the phytoplankton biomass at time t, Po is the initial biomass, and k is the growth rate.

For physical processes:

Pm  =  Po (1-r)^m

Where Pm is the phytoplankton biomass after m tidal cycles, and r is the exchange ratio (proportion of estuary water which does not return each tidal cycle).

By substitution, and replacing t by m in the first equation, we get:

Pm = Poexp(km).(1-r)^m

For phytoplankton to exist in an estuary, Pm = Po (at least), i.e. 1 / (1-r)^m = exp(km)
ln(1) - m.ln(1-r) = km
-m.ln(1-r) = km
k = -ln(1-r)

Ketchum (1954) Relation between circulation and planktonic populations in estuaries. Ecology 35: 191-200.

In 2005, Ferreira and co-workers showed that this balance has direct implications on biodiversity of estuarine phytoplankton, and discussed how this could be relevant for water management, in particular for the EU Water Framework Directive 60/2000/EC (Ecological Modelling, 187(4) 513-523).

Environment Phytoplankton Blooms Estuaries

  • 1 year 5 months ago

Alexandrium Cyst Model - Gulf of Maine - N stock

Ben Knight
1D harmful algal bloom model for Alexandrium fundyense based on population dynamics based on models developed for the the Gulf of Maine described in McGillicuddy, Anderson et al. (2005) and model by Stock, McGillicuddy et al. (2005).

This version of these models allows for the Alexandrium cells to control the DIN concentrations and for model limited nutrient scenarios by controlling 'DIN rate in'.  Given that Alexandrium is usually a small component of the phytoplankton biomass in the region, this version of the model is not necessarily appropriate for all events in the Gulf of Maine region and has been developed for regions were Alexandrium populations are the main controlling factor of dissolved nitrogen concentrations.

References:

McGillicuddy DJ, Anderson DM, Lynch DR, Townsend, DW 2005. Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical–biological model. Deep Sea Research Part II: Topical Studies in Oceanography, 52(19), 2698-2714.

Stock CA, McGillicuddy DJ, Solow AR, Anderson DA, 2005, Evaluating hypotheses for the initiation and development of Alexandrium  fundyense blooms in the western Gulf of Maine using a coupled physical-biological model. Deep-Sea Research II: Topical Studies in Oceanography, 52(19):2715-2744.

Phytoplankton Harmful Algal Blooms Red Tides Marine

  • 2 years 4 months ago

Oyster Growth based on Phytoplankton Biomass

João Lopes
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


Environment Phytoplankton Primary Production Bivalves Growth

  • 3 years 9 months ago

Alexandrium Cyst Model - Gulf of Maine (Dennis)

Dennis McGillicuddy
1D harmful algal bloom model for Alexandrium based on population dynamics for the the Gulf of Maine described in McGillicuddy, Anderson et al. (2005) and model by Stock, McGillicuddy et al. (2005).

References:

McGillicuddy DJ, Anderson DM, Lynch DR, Townsend, DW 2005. Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical–biological model. Deep Sea Research Part II: Topical Studies in Oceanography, 52(19), 2698-2714.

Stock CA, McGillicuddy DJ, Solow AR, Anderson DA, 2005, Evaluating hypotheses for the initiation and development of Alexandrium  fundyense blooms in the western Gulf of Maine using a coupled physical-biological model. Deep-Sea Research II: Topical Studies in Oceanography, 52(19):2715-2744.

Phytoplankton Harmful Algal Blooms Red Tides Marine

  • 3 years 10 months ago

Alexandrium Cyst Model - Gulf of Maine

Ben Knight
1D harmful algal bloom model for Alexandrium based on population dynamics for the the Gulf of Maine described in McGillicuddy, Anderson et al. (2005) and model by Stock, McGillicuddy et al. (2005).

References:

McGillicuddy DJ, Anderson DM, Lynch DR, Townsend, DW 2005. Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical–biological model. Deep Sea Research Part II: Topical Studies in Oceanography, 52(19), 2698-2714.

Stock CA, McGillicuddy DJ, Solow AR, Anderson DA, 2005, Evaluating hypotheses for the initiation and development of Alexandrium  fundyense blooms in the western Gulf of Maine using a coupled physical-biological model. Deep-Sea Research II: Topical Studies in Oceanography, 52(19):2715-2744.

Phytoplankton Harmful Algal Blooms Red Tides Marine

  • 3 years 10 months ago

Clone of NPD model (Nutrients, Phytoplankton, Detritus)

Juan Sebastian Terranova Soto
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.

Environment Primary Production Phytoplankton Biogeochemistry Ocean

  • 10 months 1 week ago

Clone of NPD model (Nutrients, Phytoplankton, Detritus)

Nathalia Correa Sánchez
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.

Environment Primary Production Phytoplankton Biogeochemistry Ocean

  • 10 months 1 week ago

Clone of NPD model (Nutrients, Phytoplankton, Detritus)

Bechara Assouad
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.

Environment Primary Production Phytoplankton Biogeochemistry Ocean

  • 2 years 3 months ago

Clone of Oyster Growth based on Phytoplankton Biomass

Francisco Xavier
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


Environment Phytoplankton Primary Production Bivalves Growth

  • 3 years 6 months ago

Clone of Clone of NPD model (Nutrients, Phytoplankton, Detritus)

anne-marie khoury
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.

Environment Primary Production Phytoplankton Biogeochemistry Ocean

  • 2 years 4 months ago

Clone of NPD model (Nutrients, Phytoplankton, Detritus)

Michal Kotrc
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.

Environment Primary Production Phytoplankton Biogeochemistry Ocean

  • 2 years 3 weeks ago

Clone of NPD model (Nutrients, Phytoplankton, Detritus)

Diogo Magalhães
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.

Environment Primary Production Phytoplankton Biogeochemistry Ocean

  • 2 years 10 months ago

Clone of Oyster Growth based on Phytoplankton Biomass

Ismael
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


Environment Phytoplankton Primary Production Bivalves Growth

  • 3 years 6 months ago

Clone of Clone of Oyster Growth based on Phytoplankton Biomass

Joana Ferreira Cardoso
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


Environment Phytoplankton Primary Production Bivalves Growth

  • 2 years 10 months ago

Clone of NPD model (Nutrients, Phytoplankton, Detritus)

Yousef Fernando Sanchez Trejo
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.

Environment Primary Production Phytoplankton Biogeochemistry Ocean

  • 10 months 1 week ago

Clone of Clone of Oyster Growth based on Phytoplankton Biomass

António Delgado
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


Environment Phytoplankton Primary Production Bivalves Growth

  • 2 years 10 months ago

Clone of NPD model (Nutrients, Phytoplankton, Detritus)

Maria Camila Angel
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.

Environment Primary Production Phytoplankton Biogeochemistry Ocean

  • 10 months 1 week ago

Pages