NPD model (Nutrients, Phytoplankton, Detritus)
Joao G. Ferreira ★
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 6 years 9 months ago
Simple phytoplankton and oyster model
Joao G. Ferreira ★
Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.
The phytoplankton model approximately reproduces the spring-summer diatom bloom and the (smaller) late summer dinoflagellate bloom.
Oyster growth is modelled only as a throughput from algae. Further developments would include filtration as a function of oyster biomass, oyster mortality, and other adjustments.
- 5 years 10 months ago
Phytoplankton blooms in estuaries
Joao G. Ferreira ★
For biological processes:
Pt = Po exp(kt)
Where Pt is the phytoplankton biomass at time t, Po is the initial biomass, and k is the growth rate.
For physical processes:
Pm = Po (1-r)^m
Where Pm is the phytoplankton biomass after m tidal cycles, and r is the exchange ratio (proportion of estuary water which does not return each tidal cycle).
By substitution, and replacing t by m in the first equation, we get:
Pm = Poexp(km).(1-r)^m
For phytoplankton to exist in an estuary, Pm = Po (at least), i.e. 1 / (1-r)^m = exp(km)
ln(1) - m.ln(1-r) = km
-m.ln(1-r) = km
k = -ln(1-r)
Ketchum (1954) Relation between circulation and planktonic populations in estuaries. Ecology 35: 191-200.
In 2005, Ferreira and co-workers showed that this balance has direct implications on biodiversity of estuarine phytoplankton, and discussed how this could be relevant for water management, in particular for the EU Water Framework Directive 60/2000/EC (Ecological Modelling, 187(4) 513-523).
- 5 years 4 months ago
Clone of Oyster Growth based on Phytoplankton Biomass
Andre Freitas
Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:
Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))
Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).
Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.
Environment Phytoplankton Primary Production Bivalves Growth
- 7 years 7 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Francisco Xavier
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 7 years 6 months ago
PannirbrClone4f Eco city micro algae , biogas , bioelectrcidades
Pagandai V Pannirselvam
Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:
Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))
Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).
Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.
Biogas, model as well birefineray option to seperate c02 , chp from bogas model are proposed
Environment Phytoplankton Primary Production Bivalves Growth
- 2 years 6 months ago
Mussel Growth based on Phytoplankton Biomass
Joana Guerreiro
Light, nutrients and temperature were used as forcing functions over a two year period.
- 6 years 8 months ago
Alexandrium Cyst Model - Gulf of Maine - N stock
Ben Knight
This version of these models allows for the Alexandrium cells to control the DIN concentrations and for model limited nutrient scenarios by controlling 'DIN rate in'. Given that Alexandrium is usually a small component of the phytoplankton biomass in the region, this version of the model is not necessarily appropriate for all events in the Gulf of Maine region and has been developed for regions were Alexandrium populations are the main controlling factor of dissolved nitrogen concentrations.
References:
McGillicuddy DJ, Anderson DM, Lynch DR, Townsend, DW 2005. Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical–biological model. Deep Sea Research Part II: Topical Studies in Oceanography, 52(19), 2698-2714.
Stock CA, McGillicuddy DJ, Solow AR, Anderson DA, 2005, Evaluating hypotheses for the initiation and development of Alexandrium fundyense blooms in the western Gulf of Maine using a coupled physical-biological model. Deep-Sea Research II: Topical Studies in Oceanography, 52(19):2715-2744.
- 6 years 3 months ago
Oyster Growth based on Phytoplankton Biomass
João Lopes
Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:
Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))
Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).
Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.
Environment Phytoplankton Primary Production Bivalves Growth
- 7 years 9 months ago
Primary production of phytoplankton (SIMA2018_G1)
Diogo Filipe Prata Gomes
- 2 years 8 months ago
Primary Producton Model with Phytoplankton as State Variable
Afonso Pinto
- 6 years 9 months ago
PhytOster 3
Cátia Ferreira
- 4 years 8 months ago
Le modèle NPD (nutriments, phytoplancton, détritus) basé sur la productivité primaire de la Mer du Nord
Alexia Parhas
Ce modèle illustre un certain nombre de caractéristiques intéressantes notamment le lien de trois variables d'état dans un cycle fermé, l'utilisation du temps pour contrôler la durée de l'advection et la fonction modulus pour les données de température qui cyclent annuellement sur plusieurs années.
Les variables d'état du modèle sont exprimées en unités d'azote (mg N m-3), et l'étalonnage est basé sur:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
Traduction du modèle de Joao G Ferreira (https://insightmaker.com/insight/6838/NPD-model-Nutrients-Phytoplankton-Detritus)
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 1 year 6 months ago
Alexandrium Cyst Model - Gulf of Maine (Dennis)
Dennis McGillicuddy
References:
McGillicuddy DJ, Anderson DM, Lynch DR, Townsend, DW 2005. Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical–biological model. Deep Sea Research Part II: Topical Studies in Oceanography, 52(19), 2698-2714.
Stock CA, McGillicuddy DJ, Solow AR, Anderson DA, 2005, Evaluating hypotheses for the initiation and development of Alexandrium fundyense blooms in the western Gulf of Maine using a coupled physical-biological model. Deep-Sea Research II: Topical Studies in Oceanography, 52(19):2715-2744.
- 7 years 9 months ago
Clone3f micro algae , biogas , bioelectrcidades
Pagandai V Pannirselvam
Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:
Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))
Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).
Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.
Environment Phytoplankton Primary Production Bivalves Growth
- 3 years 6 months ago
Alexandrium Cyst Model - Gulf of Maine
Ben Knight
References:
McGillicuddy DJ, Anderson DM, Lynch DR, Townsend, DW 2005. Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical–biological model. Deep Sea Research Part II: Topical Studies in Oceanography, 52(19), 2698-2714.
Stock CA, McGillicuddy DJ, Solow AR, Anderson DA, 2005, Evaluating hypotheses for the initiation and development of Alexandrium fundyense blooms in the western Gulf of Maine using a coupled physical-biological model. Deep-Sea Research II: Topical Studies in Oceanography, 52(19):2715-2744.
- 7 years 9 months ago
Final Model
Hector Ramos
- 1 year 11 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Juan Sebastian Terranova Soto
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 9 months ago
micro algae , biogas , bioelectrcidades
Pagandai V Pannirselvam
Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:
Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))
Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).
Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.
Environment Phytoplankton Primary Production Bivalves Growth
- 3 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Nathalia Correa Sánchez
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 9 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Yousef Fernando Sanchez Trejo
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 9 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Bechara Assouad
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 6 years 2 months ago
Le modèle NPD (nutriments, phytoplancton, détritus) basé sur la productivité primaire de la Mer du Nord - CHANGEMENT TEMPERATURE 1 DEGRE
Alexia Parhas
Ce modèle illustre un certain nombre de caractéristiques intéressantes notamment le lien de trois variables d'état dans un cycle fermé, l'utilisation du temps pour contrôler la durée de l'advection et la fonction modulus pour les données de température qui cyclent annuellement sur plusieurs années.
Les variables d'état du modèle sont exprimées en unités d'azote (mg N m-3), et l'étalonnage est basé sur:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
Traduction du modèle de Joao G Ferreira (https://insightmaker.com/insight/6838/NPD-model-Nutrients-Phytoplankton-Detritus)
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 1 year 6 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Adriana Gómez
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 9 months ago