Economic growth cannot go on forever, although politicians and most economist
seem to think so. The activity involved in economic growth necessarily  generates entropy (disorder and environmental degradation). Entorpy in turn generates powerful negative feedback loops which will, as
a response from

Economic growth cannot go on forever, although politicians and most economist seem to think so. The activity involved in economic growth necessarily  generates entropy (disorder and environmental degradation). Entorpy in turn generates powerful negative feedback loops which will, as a response from nature, ensure that economic activity will eventually grind to a complete halt.  In these circumstances organised society cannot persist and will collapse. The negative feedback loops shown in this graph have already started to operate. The longer economic growth continues unabated, the more powerful these negative feedback loops will become. How long can economic growth continue before it is overwhelmed? It may not be very far in the future.

 WIP Stock Flow representation of Panarchy Adaptive Cycles

WIP Stock Flow representation of Panarchy Adaptive Cycles

5 months ago
Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
 In 2012, the City of Vancouver created a sustainability strategy for staying on the leading edge of urban development called the “Greenest City: 2020 Action Plan (GCAP)” [ 1 — Open in Pop-up ]. In the report, the GCAP noted that its highest priority action was to encourage the use of electric vehic

In 2012, the City of Vancouver created a sustainability strategy for staying on the leading edge of urban development called the “Greenest City: 2020 Action Plan (GCAP)” [1Open in Pop-up]. In the report, the GCAP noted that its highest priority action was to encourage the use of electric vehicle transport in both public and private sectors. Since then, programs such as the Clean Energy Vehicle (CEV) program have been revamped to encourage consumers to choose the greener choice, often rewarding owners with up to $5000 in incentives for battery-powered vehicles and plug-in hybrids. However, the benefits of choosing electric cars are not all clear as several reports have found that hybrid electric vehicles (HEV), plug-in electric hybrid vehicles (PHEV), and battery electric cars (BEV) generate more carbon emissions during their production than current conventional vehicles [2]. I thought it would be interesting to study this sustainability issue through a systems model to determine how much impact it has on the environment compared to conventional vehicles. 

https://insightmaker.com/insight/159243/CO2-Emissions-by-Vehicle-Type-Gasoline-vs-Electric

Our model explores both carbon emissions of standard gasoline vehicles and electric vehicles from production to distribution in Canada specifically. Unfortunately, we were unable to find any statistics regarding the number of electric vehicles in production in Canada, so we have used the sales number as our production number estimate. For CO2 emission statistics, we made sure to carefully separate different types of electric vehicles as the production of the battery in battery electric vehicles have significantly more carbon emissions during production.

As expected, the carbon emissions from electric vehicles are much lower than those of gasoline vehicles after taking into account the lifecycle emissions from an average lifespan of 8 years on the road (which is the standard warranty length offered from most car companies). Some interesting things to note are that with our current rise in electric vehicle adoption, electric vehicles will dominate the roads in about 100 years. This transformation may be further accelerated by the large-scale initiatives offered by governmental organizations and increased awareness for sustainable practices. Furthermore, it was very surprising to find that electric vehicle carbon emissions will exceed that of gasoline vehicles after nearly 1000 years, but after further analysis, this makes sense as by then electric vehicles will greatly outnumber gasoline vehicles. This means that electric vehicles are not only the greener choice -- electric vehicles are by far the greenest choice as it will take nearly a thousand years before its emissions will be equal to that of its gasoline counterpart. In fact, it may even take longer than 1000 years for electric vehicles to emit more carbon emissions than gasoline vehicles if we continue looking for more sustainable methods for producing electricity and proactively choose renewable energy over fossil fuels.

Sources:

[1] https://vancouver.ca/files/cov/Greenest-city-action-plan.pdfOpen in Pop-up

[2] http://www.ccsenet.org/journal/index.php/jsd/article/view/64183

Statistics for number of gasoline and electric vehicle sales:

Gasoline Vehicles: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2010000201

Electric Vehicles: https://www.fleetcarma.com/electric-vehicle-sales-canada-2017/
  This is a simple mass balance model simulating the lake's nutrient dynamics in Lake Tai over time and it's removal of phosphorous saturation.     Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout
This is a simple mass balance model simulating the lake's nutrient dynamics in Lake Tai over time and it's removal of phosphorous saturation.

Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout
this is the Australian food web of the water buffalo
this is the Australian food web of the water buffalo
A system diagram for the Mojave Desert for an assignment at OSU- RNG 341.
A system diagram for the Mojave Desert for an assignment at OSU- RNG 341.
 Fig 3.1 from Jorgen Randers  book  2052 a Global Forecast for the Next Forty Years

Fig 3.1 from Jorgen Randers book 2052 a Global Forecast for the Next Forty Years

10 5 months ago
 Clone of IM-1954 to tidy up layout. The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors. 
   
 Use the sliders to experiment with the initial amount of non-renewable resources to see how these affec

Clone of IM-1954 to tidy up layout. The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

 

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

This diagram provides an accessible description of the key processes that guide the water quality within a lake.
This diagram provides an accessible description of the key processes that guide the water quality within a lake.
This is a model for the mass flow of phosphorus in a stream called "Ljurabäck" in Norrköping during two months. The stream flows from a lake called "Glan" to a large stream called "Motala Ström".     The model uses daily water flow values and a gradually decreasing P concentration in the lake.
This is a model for the mass flow of phosphorus in a stream called "Ljurabäck" in Norrköping during two months. The stream flows from a lake called "Glan" to a large stream called "Motala Ström". 

The model uses daily water flow values and a gradually decreasing P concentration in the lake.
This model adresses the primary production for phytoplankton growth, based on Steele’s light intensity equation and Michaelis-Menten equation for nutrient limitation.
This model adresses the primary production for phytoplankton growth, based on Steele’s light intensity equation and Michaelis-Menten equation for nutrient limitation.


My AP Environmental Homework for the Cats Over Borneo Assignment
My AP Environmental Homework for the Cats Over Borneo Assignment
Simple model to illustrate   algal  ,   growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp
Simple model to illustrate   algal  ,   growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.

  Biogas, model  as well birefineray option to seperate c02 , chp from bogas model are proposed
Eastern oyster growth model calibrated for Long Island Sound  This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)  1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;
Eastern oyster growth model calibrated for Long Island Sound

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)