Work Cited   E., Kaplan. "Biomes of the World: Tundra." Alpine Biome. Hong Kong: Marshall Cavendish Corporation., n.d. Web. 23 May 2017.      http://www.blueplanetbiomes.org/tundra.htm
Work Cited


E., Kaplan. "Biomes of the World: Tundra." Alpine Biome. Hong Kong: Marshall Cavendish Corporation., n.d. Web. 23 May 2017.     http://www.blueplanetbiomes.org/tundra.htm
The Eastern Himalayas is a hot spot in ​India. There is an abundance of species living in the area that are threatened by humanity.
The Eastern Himalayas is a hot spot in ​India. There is an abundance of species living in the area that are threatened by humanity.
Example of ​rIsk assessment on component of the building
Example of ​rIsk assessment on component of the building
Very simple model demonstrating growth of phytoplankton using Steele's equation for potential production and Michaelis-Menten equation for nutrient limitation.  Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.  The phytopla
Very simple model demonstrating growth of phytoplankton using Steele's equation for potential production and Michaelis-Menten equation for nutrient limitation.

Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.

The phytoplankton model approximately reproduces the spring-summer diatom bloom and the (smaller) late summer dinoflagellate bloom.
 
Oyster growth is modelled only as a throughput from algae. Further developments would include filtration as a function of oyster biomass, oyster mortality, and other adjustments.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.


Clone of:  'Sucesion Forestal' (by Denny S. Fernandez del Viso) for subtropical forest, which in turn is a modification of 'Modeling forest succession in a northeast deciduous forest' (by Owen Stuart).   Translated to English (by Lisa Belyea)
Clone of: 
'Sucesion Forestal' (by Denny S. Fernandez del Viso) for subtropical forest, which in turn is a modification of 'Modeling forest succession in a northeast deciduous forest' (by Owen Stuart).
Translated to English (by Lisa Belyea)
3 9 months ago
Food web based off of organisms within Yellowstone. For Bio 40
Food web based off of organisms within Yellowstone. For Bio 40

Clone of Pesticide Use in Central America for Lab work        This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.     The cotto
Clone of Pesticide Use in Central America for Lab work


This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides. 

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions. 

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998). 

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

 This model describes the key processes that influence the water level within Lake Okeechobee.
This model describes the key processes that influence the water level within Lake Okeechobee.
A model of water flow within the potable water supply chain
A model of water flow within the potable water supply chain
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
Fertilizer inflow can cause lake eutrophication. In this simulation, we are studying what happens in a simple lake ecosystem.
Fertilizer inflow can cause lake eutrophication. In this simulation, we are studying what happens in a simple lake ecosystem.
 The L ogistic Map  is a polynomial mapping (equivalently,  recurrence relation ) of  degree 2 , often cited as an archetypal example of how complex,  chaotic  behaviour can arise from very simple  non-linear  dynamical equations. The map was popularized in a seminal 1976 paper by the biologist  Rob

The Logistic Map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by Pierre François Verhulst

Mathematically, the logistic map is written

where:

 is a number between zero and one, and represents the ratio of existing population to the maximum possible population at year n, and hence x0 represents the initial ratio of population to max. population (at year 0)r is a positive number, and represents a combined rate for reproduction and starvation.
For approximate Continuous Behavior set 'R Base' to a small number like 0.125To generate a bifurcation diagram, set 'r base' to 2 and 'r ramp' to 1
To demonstrate sensitivity to initial conditions, try two runs with 'r base' set to 3 and 'Initial X' of 0.5 and 0.501, then look at first ~20 time steps

This model implements a very simple shellfish carrying capacity simulation for tidal creeks with freshwater input.  Physics  The model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  W
This model implements a very simple shellfish carrying capacity simulation for tidal creeks with freshwater input.

Physics

The model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the top slider to turn off dispersion (set to zero). If the variable being simulated is (a) salinity, you will see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system; (b) POM, then the ocean (which typically has less POM) will not contribute a flushing effect and the concentration of POM in the tidal creek or estuary will be higher.

The second slider allows you to simulate a variable river flow, and understand how dispersion compensates for changes in freshwater input.

Biology

Two biological functions are implemented in CREEK, both extremely simplified.

1. Primary production - a constant primary production rate is considered in gC m-3 d-1

2. Oyster filtration - a constant clearance rate (CR) is considered in L ind- 1 h-1, scaled to a certain stocking density S (ind m-3)

Units are normalized, and food depletion is CR * S * POM, in g POM m-3 d-1

The third slider allows for adjustment of different aquaculture densities.

Wild filter-feeding species are included in the model, using an identical clearance rate to the cultivated oysters. Wild species can be turned on or off in the model using the fourth slider.

The model provides three outputs:
1. POM concentration in mg L-1
2. Equivalent in chlorophyll (ug L-1)
3. Total oyster biomass in kg for the whole system
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

181 4 months ago
	This a simple and "totally accurate" model of the exponential human population.
This a simple and "totally accurate" model of the exponential human population.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
This stock and flow diagram provides a broad description of the key nutrient pathways (N and P) that exist in a dune-lake system subject to external loadings emanating from intensive agriculture.
This stock and flow diagram provides a broad description of the key nutrient pathways (N and P) that exist in a dune-lake system subject to external loadings emanating from intensive agriculture.
Simple model to illustrate Steele's equation for primary production of phytoplankton.  The equation is:  Ppot = Pmax I/Iopt exp(1-I/Iopt)  Where:  Ppot: Potential production (e.g. d-1, or mg C m-2 d-1) Pmax: Maximum production (same units as Ppot) I: Light energy at depth of interest (e.g. uE m-2 s-
Simple model to illustrate Steele's equation for primary production of phytoplankton.

The equation is:

Ppot = Pmax I/Iopt exp(1-I/Iopt)

Where:

Ppot: Potential production (e.g. d-1, or mg C m-2 d-1)
Pmax: Maximum production (same units as Ppot)
I: Light energy at depth of interest (e.g. uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (same units as I)

The model contains no state variables, just illustrates the rate of production, by making the value of I equal to the timestep (in days). Move the slider to the left for more pronounced photoinhibition, to the right for photosaturation.
HANDY Model of Societal Collapse from Ecological Economics  Paper   see also D Cunha's model at  IM-15085  (Spanish)
HANDY Model of Societal Collapse from Ecological Economics Paper 
see also D Cunha's model at IM-15085 (Spanish)
18 2 months ago