Your browser (Internet Explorer 8 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.

X

Menu

Disease

Reservoir Disease Spread

Scott Fortmann-Roe
This model simulates a waterborne illness spread from a central reservoir. It illustrates the combination of System Dynamics (modeling pathogen levels in the reservoir) and Agent Based Modeling.
Make sure to check out the Map display to see the geographic clustering of disease incidence around the reservoir.

Disease Agent Based Modeling

  • 5 years 4 months ago

SARS-CoV-19 model

Lucia Vega Resto
SARS-CoV-19 spread in different countries- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment

SARS-CoV-19 COVID-19 Corona Coronavirus Virus Disease Infection Pandemic

  • 2 weeks 5 days ago

Disease - Participatory Simulation Data

wmstroup
Data from two rounds of using Disease Participatory Simulation in class. Participants + Androids = 39.  By adjusting Rate Constant, stocks and flows representation can be used to match data from either Trial 1 or Trial 2. An example of matching Trial 1 is shown when this simulation is run.  Graph of "Area" (Well * Sick) has the same shape as Rate Catching graph. The Rate Catching graph is much smaller because the Well * Sick values are multiplied by a small constant that is the Rate Constant.

Disease Participatory Simulation Logistic Curve Epidemic Curve

  • 5 years 11 months ago

Disease - Participatory Simulation Data

Walter M. Stroup
Data from two rounds of using Disease Participatory Simulation in class. Participants + Androids = 39.  By adjusting Rate Constant, stocks and flows representation can be used to match data from either Trial 1 or Trial 2. An example of matching Trial 1 is shown when this simulation is run.  Graph of "Area" (Well * Sick) has the same shape as Rate Catching graph. The Rate Catching graph is much smaller because the Well * Sick values are multiplied by a small constant that is the Rate Constant.

Disease Participatory Simulation Logistic Curve Epidemic Curve

  • 4 years 9 months ago

Pages