#### RAGE SIR Model

##### Kendra Simpson

This model is for BME 1300, where we have to model an infectious disease, in this case, a zombie virus: Rage.

- 4 years 1 month ago

#### SIR Model

##### Luis Gustavo Nardin

- 3 months 2 weeks ago

#### SIRKimpossibles

##### Kimpossibles

A Susceptible-Infected-Recovered (SIR) disease model for Rage

- 4 years 1 month ago

#### A Sleek, non-dimensionalized SIR (Susceptible, Infected, Recovered) model

##### Andrew E Long

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 1 year 2 months ago

#### A Simple SIR (Susceptible, Infected, Recovered) without infection

##### Andrew E Long

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 1 year 3 months ago

#### A Simple SIR (Susceptible, Infected, Recovered) Example

##### Andrew E Long

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

- 1 year 3 months ago

#### Clone of A Simple Infection-only SIR (Susceptible, Infected, Recovered) Example

##### Sally Dufek

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 1 year 3 months ago

#### SIR model with stochastic events

##### Andrew E Long

Thanks to

https://insightmaker.com/insight/25229/SIR-model-with-stochastic-events

for this example of adding stochasticity to the SIR model. "A simple extension of the tutorial SIR example, adding in Poisson events for infection and recovery. There is one macro, RandPoissonStep(rate)... to simulate Poisson processes."

I've tried to add in the infection step, as well as turn numbers into integers (without much luck). But it certainly has some interesting dynamics! I've also added in a phase plane graphic.

https://insightmaker.com/insight/25229/SIR-model-with-stochastic-events

for this example of adding stochasticity to the SIR model. "A simple extension of the tutorial SIR example, adding in Poisson events for infection and recovery. There is one macro, RandPoissonStep(rate)... to simulate Poisson processes."

I've tried to add in the infection step, as well as turn numbers into integers (without much luck). But it certainly has some interesting dynamics! I've also added in a phase plane graphic.

- 1 year 2 months ago

#### SIR Model

##### Sarah Huang

- 3 years 7 months ago

#### Untitled Insight

##### walaa faraj

- 1 year 3 months ago

#### Aeromonas Management Model

##### Bradley Richardson

- 1 month 2 weeks ago

#### A Simple, non-dimensionalized SIR (Susceptible, Infected, Recovered) model, with periodic infectivity

##### Andrew E Long

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 1 year 3 months ago

#### Aeromonas ABM - Farm

##### Bradley Richardson

- 2 months 1 week ago

#### Clone of A Simple Infection-only SIR (Susceptible, Infected, Recovered) Example

##### Maria McMahon

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 1 year 3 months ago

#### Clone of Clone of A Simple Infection-only SIR (Susceptible, Infected, Recovered) Example

##### Leah Gillespie

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 1 year 3 months ago

#### Clone of A Simple Infection-only SIR (Susceptible, Infected, Recovered) Example

##### Connor Edwards

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 1 year 3 months ago

#### Clone of A Sleek, non-dimensionalized SIR (Susceptible, Infected, Recovered) model

##### Leah Gillespie

This is an example of an SIR (Susceptible, Infected, Recovered) model that has been re-parameterized down to the bare minimum, to illustrated the dynamics possible with the fewest number of parameters.

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 1 year 3 months ago

#### Clone of A Sleek, non-dimensionalized SIR (Susceptible, Infected, Recovered) model

##### Christopher Milesky

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 1 year 3 months ago

#### Clone of A Simple Infection-only SIR (Susceptible, Infected, Recovered) Example

##### Leah Gillespie

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 1 year 3 months ago

#### Clone of A Simple Infection-only SIR (Susceptible, Infected, Recovered) Example

##### Maria E Ruwe

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 1 year 3 months ago

#### Clone of A Simple Infection-only SIR (Susceptible, Infected, Recovered) Example

##### Donna Odhiambo

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 1 year 3 months ago

#### Clone of A Sleek, non-dimensionalized SIR (Susceptible, Infected, Recovered) model

##### Maria E Ruwe

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 1 year 2 months ago

#### Clone of A Sleek, non-dimensionalized SIR (Susceptible, Infected, Recovered) model

##### Jacob Englert

We're rescaled this SIR model, so that time is given in infection rate-appropriate time units, "rates" are now ratios of rates (with infectivity rate in the denominator), and populations are considered proportions (unfortunately InsightMaker doesn't function properly if I give them all values from 0 to 1, which sum to 1 -- so, at the moment, I give them values that sum to 100, and consider the results percentages).

The new display includes the asymptotics: the three sub-populations will tend to fixed values as time goes to infinity; the infected population goes to zero if the recovery rate is greater than the infectivity rate -- i.e., the disease dies out.

Note the use of a "ghost" stock (for Total Population), which I think is a pretty cool idea. It cuts down on the number of arcs in the model graph.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-rescaled.nb

- 1 year 2 months ago

#### Clone of A Simple Infection-only SIR (Susceptible, Infected, Recovered) Example

##### Lizzy Compton

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 1 year 3 months ago