Your browser (Internet Explorer 8 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.

X

Menu

Aquaculture

Pacific oyster, Crassostrea gigas, growth model

Filipe M. Soares
Pacific oyster, Crassostrea gigas, growth model 
Implementation of the model developed by Kobayashi et al., (1997). The model was setted to individual growth. 
Reproduction and effects of TPM on filtration rate (FR) were not included. [yellow variables]
The values of Chlorophyll, Salinity and Water Temperature are from Mondol et al., (2016). 
The growth follows a similar trend of that reported by Modol et al., (2016) but the wet weight tissue values are 3 times higher that the expected. 
References
Kobayashi, M., Hofmann, E. E., Powell, E. N., Klinck, J. M., & Kusaka, K. (1997). A population dynamics model for the Japanese oyster, Crassostrea gigas. Aquaculture, 149(3-4), 285-321.
Mondol, M. R., Kim, C. W., Kang, C. K., Park, S. R., Noseworthy, R. G., & Choi, K. S. (2016). Growth and reproduction of early grow-out hardened juvenile Pacific oysters, Crassostrea gigas in Gamakman Bay, off the south coast of Korea. Aquaculture, 463, 224-233.

Oyster Shellfish Aquaculture

  • 1 year 11 months ago

CARP - Carp AquacultuRe in Ponds

Joao G. Ferreira
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In May 2013, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.

Environment Aquaculture Finfish Sustainability

  • 2 years 1 week ago

EMSD 2016 full

Joao G. Ferreira
European Masters in System Dynamics 2016
New University of Lisbon, Portugal

 Model to represent oyster individual growth by simulating feeding and metabolism. Builds on the core model in three ways: (i) partitions metabolic costs into feeding and fasting catabolism; (ii) adds allometry to clearance rate; (iii) adds temperature dependence to clearance rate.

Environment Aquaculture

  • 11 months 4 weeks ago

Eastern oyster, Crassostrea virginica, growth model

Filipe M. Soares
Eastern oyster, Crassostrea virginica, growth model
Implementation of the model presented by Cerco (2014), with a lot of adaptations. Model translates the individual growth. 

The food source was only considered as phytoplankton, and the forcing variables temperature, DO and salinity were not considered. 

Reference
Cerco, C. F. (2014). Calculation of Oyster Benefits with a Bioenergetics Model of the Virginia Oyster (No. ERDC/EL-TR-14-13). ENGINEER RESEARCH AND DEVELOPMENT CENTER VICKSBURG MS ENVIRONMENTAL LAB.


Oyster Shellfish Bivalve Aquaculture

  • 2 years 1 month ago

SIMA 2018 full

Joao G. Ferreira
M.Sc. in Environmental Engineering SIMA 2018
New University of Lisbon, Portugal

 Model to represent oyster individual growth by simulating feeding and metabolism. Model (i) partitions metabolic costs into feeding and fasting catabolism; (ii) adds allometry to clearance rate; (iii) adds temperature dependence to clearance rate; (iv) illustrates how clearance rate per gram is used if we multiply by the oyster biomass

Environment Aquaculture

  • 11 months 3 weeks ago

SIMA 2018 coupled primary production and oysters

Joao G. Ferreira
M.Sc. in Environmental Engineering SIMA 2018
New University of Lisbon, Portugal

 Model to represent oyster individual growth by simulating feeding and metabolism. Model (i) partitions metabolic costs into feeding and fasting catabolism; (ii) adds allometry to clearance rate; (iii) adds temperature dependence to clearance rate; (iv) illustrates how coupled model requires a substantial volume of water (a single oyster typically clears 20-30 m3 of water in one growth cycle)

Environment Aquaculture

  • 1 week 2 days ago

Clone of CARP - Carp AquacultuRe in Ponds

Matthew Gray
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.

Environment Aquaculture Finfish Sustainability

  • 5 years 2 weeks ago

Clone of CARP - Carp AquacultuRe in Ponds

Alhambra
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.

Environment Aquaculture Finfish Sustainability

  • 5 years 3 months ago

Clone of CARP - Carp AquacultuRe in Ponds

Pagandai V Pannirselvam
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.

Environment Aquaculture Finfish Sustainability

  • 2 years 4 months ago

Clone of CARP - Carp AquacultuRe in Ponds

Te Kou Gage
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.

Environment Aquaculture Finfish Sustainability

  • 11 months 2 weeks ago

Clone of CARP - Carp AquacultuRe in Ponds

Pagandai V Pannirselvam
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.

Environment Aquaculture Finfish Sustainability

  • 2 years 4 months ago

Clone of CARP - Carp AquacultuRe in Ponds

Igor Sreckovic
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In May 2013, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.

Environment Aquaculture Finfish Sustainability

  • 1 year 5 months ago

Clone of CARP - Carp AquacultuRe in Ponds

Valentin Balseanu
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In 2011, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.

Environment Aquaculture Finfish Sustainability

  • 2 years 1 month ago