#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

##### Jared Slavey

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

- 1 year 2 months ago

#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

##### Cameron Demler

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

- 1 year 2 months ago

#### Clone of Modelo SIR simples - Covid-19

##### Angélica Letícia Braz Souza

Modelo epidemiológico simples

Fonte:https://www.worldometers.info/coronavirus/country/brazil/

**SIR: Susceptíveis - Infectados - Recuperados****Dados iniciais do Brasil em 04 Abr 2020**

Fonte:https://www.worldometers.info/coronavirus/country/brazil/

- 1 year 1 month ago

#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

##### Jon Ford

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

- 1 year 2 months ago

#### Clone of A Simple SIR (Susceptible, Infected, Recovered) Example

##### Jake Moore

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

- 1 year 2 months ago

#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

##### Samuel Kaelin

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

- 1 year 2 months ago

#### Clone of A Simple SIR (Susceptible, Infected, Recovered) Example

##### Cameron Demler

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

- 1 year 2 months ago

#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

##### Proctor Mercer

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

- 1 year 2 months ago

#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

##### Xuexiao Zhang

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

- 8 months 2 weeks ago

#### Clone of Modelo SIR simples para Covid-19 - Brasil

##### Barbara Scoralick Villela

Modelo epidemiológico simples

**SIR: Susceptíveis -Infectados - Recuperados****Ajuste os PARÂMETROS abaixo.Clique em SIMULATE no menu superior para simular.Dados iniciais de 04 Abr 2020Fonte: https://www.worldometers.info/coronavirus/country/brazil/**

- 1 year 2 months ago

#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

##### Jacob Adkins

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

- 1 year 2 months ago

#### Clone of A Simple SIR (Susceptible, Infected, Recovered) Example

##### Samuel Kaelin

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

- 1 year 2 months ago

#### Clone of Modelo SIR simples - Covid-19

##### Waner Miranda

Modelo epidemiológico simples

Fonte:https://www.worldometers.info/coronavirus/country/brazil/

**SIR: Susceptíveis - Infectados - Recuperados****Dados iniciais do Brasil em 04 Abr 2020**

Fonte:https://www.worldometers.info/coronavirus/country/brazil/

- 1 year 2 months ago

#### Clone of SIR Model

##### Zach D

- 3 weeks 4 days ago

#### Clone of SIR Model

##### Nicolas Fuentes

- 10 months 1 week ago

#### Clone of Modelo SIR simples - Covid-19

##### Luiz Almeida Silva

Modelo epidemiológico simples

Fonte:https://www.worldometers.info/coronavirus/country/brazil/

**SIR: Susceptíveis - Infectados - Recuperados****Dados iniciais do Brasil em 04 Abr 2020**

Fonte:https://www.worldometers.info/coronavirus/country/brazil/

- 1 year 2 months ago

#### Clone of SIR Model

##### Stanislava Mildeova

- 2 months 4 weeks ago

#### Clone of Modelo SIR simples - Covid-19

##### Cassiano Ricardo Queiroz Leão

**SIR: Susceptíveis - Infectados - Recuperados**

**Dados iniciais do Brasil em 04 Abr 2020**

Fonte:https://www.worldometers.info/coronavirus/country/brazil/

- 1 year 2 months ago

#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

##### Jordan

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

- 1 year 2 months ago

#### Clone of Clone of A Simple Infection-only SIR (Susceptible, Infected, Recovered) Example

##### Jiangkun Wang

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

- 8 months 3 weeks ago

#### Clone of A Simple SIR (Susceptible, Infected, Recovered) Example

##### Cameron Demler

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

- 1 year 2 months ago

#### Clone of SIR Model

##### Mark de Cates

- 1 year 3 months ago

#### Clone of Modelo SIR simples - Covid-19

##### Edgar Bellini Xavier

**SIR: Susceptíveis - Infectados - Recuperados**

**Dados iniciais do Brasil em 04 Abr 2020**

Fonte:https://www.worldometers.info/coronavirus/country/brazil/

- 1 year 2 months ago

#### Clone of Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death

##### Jon Ford

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured inhttps://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:

- 1 year 1 month ago