A basic infection model where the the infection and recovery rates depend on the fraction of the total population that is infected.
A basic infection model where the the infection and recovery rates depend on the fraction of the total population that is infected.
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

 Here we have modified the SIR model of Insight 584 by adding an additional stock of Exposed people, who become Infective after an incubation period.

Here we have modified the SIR model of Insight 584 by adding an additional stock of Exposed people, who become Infective after an incubation period.

This insight is about infection propagation and population migration influence on this propagation.
   
 For this, we defined a world population size and a percentage of it who’s infected. Then, we created an agent where we simulated possible states of an individual. 
 So, he can be healthy, infecte
This insight is about infection propagation and population migration influence on this propagation.


For this, we defined a world population size and a percentage of it who’s infected. Then, we created an agent where we simulated possible states of an individual.

So, he can be healthy, infected (with an infection rate) or immunized ( with a certain rate of immunization). If the individual is infected, he can be alive or dead. Then, we simulated different continents (North-America, Asia and Europe) with a migration between theses with a certain rate of migration (we tried to approach reality).


Then, thanks to our our move action which represent a circular permutation between the different continents with a random probability the agent will be applied to every individual of the world population.


How the program works ?


In order to use this insight needs to define a size of world population and a probability of every individual to reproduce himself.


Every individual of this population can have three different state (healthy, infected or immunized) and infected people can be alive or dead.

We need to define a percentage of infection to healthy people and a percentage of death for infected people and also a percentage of immunization.

Finally there is le migration part of the program, in this one we need to define three different continents, states or whatever you want. We also need to define a migration probability between each continent to move these person.


With this moving people we can study the influence of migration on the propagation of a disease.


 Upgrade of Kermack–McKendrick Epidemic SIR Infectious Disease Model (circa 2015) - Metrics by Guy Lakeman   This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recove

Upgrade of Kermack–McKendrick Epidemic SIR Infectious Disease Model (circa 2015) - Metrics by Guy Lakeman

This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to infection (Resistant) or those who had fled the epidemic. Note the need to initiate the epidemic by adding a pulse of a single infected person at time 0.

Addition of a slider for susceptibles is equivalent to accumulated total cases

SARS, MERS AND COVID are similar virus types only differing in their sub genus

The COVID outbreak has reached 150,000 infected people

This simulation allows an attempt at predicting how long the virus will persist and its longevity dependence on its high speed massive infection numbers that have reached pandemic proportions

SARS reached 8,000 infected total and ran for 9 months before stopping

MERS 2012 is still killing 8 years later with patients dying even after using interferon to try and cure them

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Upgrade of Kermack–McKendrick Epidemic SIR Infectious Disease Model (circa 2015) - Metrics by Guy Lakeman   This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recove

Upgrade of Kermack–McKendrick Epidemic SIR Infectious Disease Model (circa 2015) - Metrics by Guy Lakeman

This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to infection (Resistant) or those who had fled the epidemic. Note the need to initiate the epidemic by adding a pulse of a single infected person at time 0.

Addition of a slider for susceptibles is equivalent to accumulated total cases

SARS, MERS AND COVID are similar virus types only differing in their sub genus

The COVID outbreak has reached 150,000 infected people

This simulation allows an attempt at predicting how long the virus will persist and its longevity dependence on its high speed massive infection numbers that have reached pandemic proportions

SARS reached 8,000 infected total and ran for 9 months before stopping

MERS 2012 is still killing 8 years later with patients dying even after using interferon to try and cure them

updated 16/3/2020 from 5 years ago

 Upgrade of Kermack–McKendrick Epidemic SIR Infectious Disease Model (circa 2015) - Metrics by Guy Lakeman   This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recove

Upgrade of Kermack–McKendrick Epidemic SIR Infectious Disease Model (circa 2015) - Metrics by Guy Lakeman

This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to infection (Resistant) or those who had fled the epidemic. Note the need to initiate the epidemic by adding a pulse of a single infected person at time 0.

Addition of a slider for susceptibles is equivalent to accumulated total cases

SARS, MERS AND COVID are similar virus types only differing in their sub genus

The COVID outbreak has reached 150,000 infected people

This simulation allows an attempt at predicting how long the virus will persist and its longevity dependence on its high speed massive infection numbers that have reached pandemic proportions

SARS reached 8,000 infected total and ran for 9 months before stopping

MERS 2012 is still killing 8 years later with patients dying even after using interferon to try and cure them

 Upgrade of Kermack–McKendrick Epidemic SIR Infectious Disease Model (circa 2015) - Metrics by Guy Lakeman   This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recove

Upgrade of Kermack–McKendrick Epidemic SIR Infectious Disease Model (circa 2015) - Metrics by Guy Lakeman

This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to infection (Resistant) or those who had fled the epidemic. Note the need to initiate the epidemic by adding a pulse of a single infected person at time 0.

Addition of a slider for susceptibles is equivalent to accumulated total cases

SARS, MERS AND COVID are similar virus types only differing in their sub genus

The COVID outbreak has reached 150,000 infected people

This simulation allows an attempt at predicting how long the virus will persist and its longevity dependence on its high speed massive infection numbers that have reached pandemic proportions

SARS reached 8,000 infected total and ran for 9 months before stopping

MERS 2012 is still killing 8 years later with patients dying even after using interferon to try and cure them

 Kermack–McKendrick Epidemic SIR Infectious Disease Model - Metrics by Guy Lakeman   This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to inf

Kermack–McKendrick Epidemic SIR Infectious Disease Model - Metrics by Guy Lakeman

This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to infection (Resistant) or those who had fled the epidemic. Note the need to initiate the epidemic by adding a pulse of a single infected person at time 0.

Variant of the model "COVID-19 spread" made by Anxo-Lois Pereira and Miquel Martínez de Morentin, including reinfection, permanent immunity and Vaccines. Made for the subject of TAED.
Variant of the model "COVID-19 spread" made by Anxo-Lois Pereira and Miquel Martínez de Morentin, including reinfection, permanent immunity and Vaccines. Made for the subject of TAED.
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Kermack–McKendrick Epidemic SIR Infectious Disease Model - Metrics by Guy Lakeman   This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to inf

Kermack–McKendrick Epidemic SIR Infectious Disease Model - Metrics by Guy Lakeman

This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to infection (Resistant) or those who had fled the epidemic. Note the need to initiate the epidemic by adding a pulse of a single infected person at time 0.

This insight is about infection propagation and  population migration influence on this propagation.

For this, we defined a world population size and a percentage of it who’s infected. Then, we created an agent where we simulated possible states of an individual.
So, he can be healthy, infected (wi
This insight is about infection propagation and  population migration influence on this propagation. For this, we defined a world population size and a percentage of it who’s infected. Then, we created an agent where we simulated possible states of an individual. So, he can be healthy, infected (with an infection rate) or immunized ( with a certain rate of immunization). If the individual is infected, he can be alive or dead. Then, we simulated different continents (North-America, Asia and Europe) with a migration between these with a certain rate of migration (we tried to approach reality). Then, thanks to our move action which represents a circular permutation between the different continents with a random probability, the agent will be applied to every individual of the world population.

 How does the program work ?

In order to use this insight, we need to define a size of world population and a probability of every individual to reproduce himself. Every individual of this population can have three different state (healthy, infected or immunized) and infected people can be alive or dead. We need to define a percentage of infection for healthy people and a percentage of death for infected people and also a percentage of immunization.
Finally, there is Migration Part of the program, in this one, we need to define three different continents, states or whatever you want. We also need to define a migration probability between each continent to move these person. With this moving people, we can study the influence of migration on the propagation of a disease.

Vincent Cochet, Julien Platel, Jordan Béguet
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 Here we have modified the SIR model of Insight 584 by adding an additional stock of Exposed people, who become Infective after an incubation period.

Here we have modified the SIR model of Insight 584 by adding an additional stock of Exposed people, who become Infective after an incubation period.

 Upgrade of Kermack–McKendrick Epidemic SIR Infectious Disease Model (circa 2015) - Metrics by Guy Lakeman   This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recove

Upgrade of Kermack–McKendrick Epidemic SIR Infectious Disease Model (circa 2015) - Metrics by Guy Lakeman

This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to infection (Resistant) or those who had fled the epidemic. Note the need to initiate the epidemic by adding a pulse of a single infected person at time 0.

Addition of a slider for susceptibles is equivalent to accumulated total cases

SARS, MERS AND COVID are similar virus types only differing in their sub genus

The COVID outbreak has reached 150,000 infected people

This simulation allows an attempt at predicting how long the virus will persist and its longevity dependence on its high speed massive infection numbers that have reached pandemic proportions

SARS reached 8,000 infected total and ran for 9 months before stopping

MERS 2012 is still killing 8 years later with patients dying even after using interferon to try and cure them

updated 16/3/2020 from 5 years ago

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

 Kermack–McKendrick Epidemic SIR Infectious Disease Model - Metrics by Guy Lakeman   This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to inf

Kermack–McKendrick Epidemic SIR Infectious Disease Model - Metrics by Guy Lakeman

This is a simple SIR infectious diseases 3 stock model with Susceptibles, Infectives and Recovereds stocks. In the initial description the R signified Removed and could include Deaths, Recovered with immunity to infection (Resistant) or those who had fled the epidemic. Note the need to initiate the epidemic by adding a pulse of a single infected person at time 0.