A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
​







  The current electricity portfolio of Texas  is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of le

The current electricity portfolio of Texas is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of less carbon-intensive fossil fuels (e.g. natural gas).

As boundaries to our problem, we will be using 35 years as our time frame. We will also limit our model to the State of Texas as our spatial extent. Over the past decade, Texas is becoming a major natural gas consumer; the electricity portfolio has been gradually changing. However, around 40% of electricity is still generated from burning coal, and only a very minor portion of electricity is from renewables. Texas is betting better in adopting solar and wind energy, however generally speaking the state is still falling behind in renewable energy.

The two main goals are to lower the overall emission of greenhouse gases for the electricity grid and to encourage growth of cleaner, renewable energy resources.

Our objectives include maximizing the economic benefits of exploring unconventional oil and natural gas resources, diversifying the energy portfolio of Texas, encouraging the production and exportation of unconventional hydrocarbon resources, and reallocating the added revenue to the transition to renewables, like wind and solar

Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
A simple simulation​ of a house losing heat at a rate based on indoor vs. outdoor temperature difference, and turning a heating system on and off to maintain indoor temperature.
A simple simulation​ of a house losing heat at a rate based on indoor vs. outdoor temperature difference, and turning a heating system on and off to maintain indoor temperature.
​Energy Informatics -  Comprehensive model outlining the cause and effects the advent of autonomous electric cars have had upon supply and demand as well as numerous other aspects of the economy
​Energy Informatics - 
Comprehensive model outlining the cause and effects the advent of autonomous electric cars have had upon supply and demand as well as numerous other aspects of the economy