Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

Based on Psychological Medicine Dec 2015  article   Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder  by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned  here . See also 2018 N. Hosseinichimeh Plos ONE  article  for rumination focuss
Based on Psychological Medicine Dec 2015 article Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned here. See also 2018 N. Hosseinichimeh Plos ONE article for rumination focussed SD simulation
 Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

 Addition of glucagon hormone action to control glucose homeostasis extended from  IM-586

Addition of glucagon hormone action to control glucose homeostasis extended from IM-586

Summary of Gizem Aktas M Sc thesis and prize winning paper from ISDC2018 extended  abstract pdf   See also Tom fiddaman's metaSD blog  entry 1 and  entry 2  Note the response time frame of interest is from hours to around 45 days. See  IM-34861  for a broader developmental view
Summary of Gizem Aktas M Sc thesis and prize winning paper from ISDC2018 extended abstract pdf 
See also Tom fiddaman's metaSD blog entry1 and entry 2 Note the response time frame of interest is from hours to around 45 days. See IM-34861 for a broader developmental view
 Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker     Glucose Insulin Model Info:  Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Spr

Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker


Glucose Insulin Model Info:

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

 Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker     Glucose Insulin Model Info:  Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Spr

Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker


Glucose Insulin Model Info:

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

Gross theory of emotion regulation from Saras Chung ISDC 2015   Abstract   See also Tibor Bosse's Computational model  paper
Gross theory of emotion regulation from Saras Chung ISDC 2015  Abstract 
See also Tibor Bosse's Computational model paper
 A simple glucose regulation causal loop diagram taken from Richard O. Foster, 1970: The Dynamics of blood sugar regulation, MSc thesis, MIT Dept of Electrical Engineering, available on the MIT System Dynamics Group Literature Collection and in the MIT Electronic Libraries. See  IM-587  for Addition

A simple glucose regulation causal loop diagram taken from Richard O. Foster, 1970: The Dynamics of blood sugar regulation, MSc thesis, MIT Dept of Electrical Engineering, available on the MIT System Dynamics Group Literature Collection and in the MIT Electronic Libraries. See IM-587 for Addition of Glucagon

 Addition of glucagon hormone action to control glucose homeostasis extended from  IM-586

Addition of glucagon hormone action to control glucose homeostasis extended from IM-586

 Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker     Glucose Insulin Model Info:  Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Spr

Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker


Glucose Insulin Model Info:

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

Diagrams from Greene 2017 nejm  article  Putting the patient back together Social Medicine, Network Medicine, and the Limits of Reductionism
Diagrams from Greene 2017 nejm article Putting the patient back together Social Medicine, Network Medicine, and the Limits of Reductionism
Based on Psychological Medicine Dec 2015  article   Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder  by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned  here
Based on Psychological Medicine Dec 2015 article Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned here
 Additional of glucagon hormone action to control glucose homeostasis

Additional of glucagon hormone action to control glucose homeostasis

Based on Psychological Medicine Dec 2015  article   Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder  by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned  here
Based on Psychological Medicine Dec 2015 article Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned here
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

Based on Psychological Medicine Dec 2015  article   Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder  by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned  here
Based on Psychological Medicine Dec 2015 article Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder by A. K. Wittenborn, H. Rahmandad, J. Rick and N. Hosseinichimeh, mentioned here
 Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker     Glucose Insulin Model Info:  Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Spr

Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker


Glucose Insulin Model Info:

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

 Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker     Glucose Insulin Model Info:  Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Spr

Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker


Glucose Insulin Model Info:

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

 A simple glucose regulation causal loop diagram taken from Richard O. Foster, 1970: The Dynamics of blood sugar regulation, MSc thesis, MIT Dept of Electrical Engineering, available on the MIT System Dynamics Group Literature Collection and in the MIT Electronic Libraries. See  IM-587  for Addition

A simple glucose regulation causal loop diagram taken from Richard O. Foster, 1970: The Dynamics of blood sugar regulation, MSc thesis, MIT Dept of Electrical Engineering, available on the MIT System Dynamics Group Literature Collection and in the MIT Electronic Libraries. See IM-587 for Addition of Glucagon

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.