STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

The need to spend time doing chargeable work, in balance and/or conflict with the need to spend time doing marketing to ensure a continuing workload into the future.
The need to spend time doing chargeable work, in balance and/or conflict with the need to spend time doing marketing to ensure a continuing workload into the future.
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

last week
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 This is an implementation of the 'Very Simple Ecosystem Model' (VSEM) from R package BayesianTools (Hartig et al. 2019). It consists of three stocks: aboveground carbon in plant biomass, belowground carbon in plant biomass and carbon in soil organic matter.     Reference:  Florian Hartig, Francesco
This is an implementation of the 'Very Simple Ecosystem Model' (VSEM) from R package BayesianTools (Hartig et al. 2019). It consists of three stocks: aboveground carbon in plant biomass, belowground carbon in plant biomass and carbon in soil organic matter. 

Reference:
Florian Hartig, Francesco Minunno and Stefan Paul (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
16 2 weeks ago
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

 STEM is a modified implementation of Hartig et al.'s (2019) Very Simple Ecosystem Model (VSEM). The vegetation part of the model has two stocks of biomass carbon (C): aboveground C and belowground C.  The soil part of the model has a single stock of soil organic C. Carbon flows into the biomass C s
STEM is a modified implementation of Hartig et al.'s (2019) Very Simple Ecosystem Model (VSEM). The vegetation part of the model has two stocks of biomass carbon (C): aboveground C and belowground C.  The soil part of the model has a single stock of soil organic C. Carbon flows into the biomass C stocks via net primary productivity (NPP). Carbon flows out of these stocks and into the soil organic C stock via the loss of aboveground/belowground C through senescence (i.e., abscission of dead leaves and roots). SOC loss is due to heterotrophic respiration of the soil organic matter.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

154 last week
The need to spend time doing chargeable work, in balance and/or conflict with the need to spend time doing marketing to ensure a continuing workload into the future.
The need to spend time doing chargeable work, in balance and/or conflict with the need to spend time doing marketing to ensure a continuing workload into the future.
 This is an implementation of the 'Very Simple Ecosystem Model' (VSEM) from R package BayesianTools (Hartig et al. 2019). It consists of three stocks: aboveground carbon in plant biomass, belowground carbon in plant biomass and carbon in soil organic matter.     Reference:  Florian Hartig, Francesco
This is an implementation of the 'Very Simple Ecosystem Model' (VSEM) from R package BayesianTools (Hartig et al. 2019). It consists of three stocks: aboveground carbon in plant biomass, belowground carbon in plant biomass and carbon in soil organic matter. 

Reference:
Florian Hartig, Francesco Minunno and Stefan Paul (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

7 months ago
The need to spend time doing chargeable work, in balance and/or conflict with the need to spend time doing marketing to ensure a continuing workload into the future.
The need to spend time doing chargeable work, in balance and/or conflict with the need to spend time doing marketing to ensure a continuing workload into the future.
 This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.    Reference:  Hartig, F., Minunno, F., and Paul, S. (2019). Baye
This model is a modified version of the 'Very Simple Ecosystem Model' (VSEM; Hartig et al. 2019). Controls have been added to gross primary productivity (GPP) and heterotrophic respiration (Rhetero) based on evapotranspiration rates.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools
 STEM is a modified implementation of Hartig et al.'s (2019) Very Simple Ecosystem Model (VSEM). The vegetation part of the model has two stocks of biomass carbon (C): aboveground C and belowground C.  The soil part of the model has a single stock of soil organic C. Carbon flows into the biomass C s
STEM is a modified implementation of Hartig et al.'s (2019) Very Simple Ecosystem Model (VSEM). The vegetation part of the model has two stocks of biomass carbon (C): aboveground C and belowground C.  The soil part of the model has a single stock of soil organic C. Carbon flows into the biomass C stocks via net primary productivity (NPP). Carbon flows out of these stocks and into the soil organic C stock via the loss of aboveground/belowground C through senescence (i.e., abscission of dead leaves and roots). SOC loss is due to heterotrophic respiration of the soil organic matter.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

7 months ago