This stock-flow simulation model is to show Covid-19 virus spread rate, sources of spreading and safety measures followed by all the countries affected around the world. The simulation also aims at predicting for how much more period of time the virus will persist, how many people could recover at w
This stock-flow simulation model is to show Covid-19 virus spread rate, sources of spreading and safety measures followed by all the countries affected around the world.
The simulation also aims at predicting for how much more period of time the virus will persist, how many people could recover at what kind of rate and also about the virus toughness dependence based on its excessive speed, giving rise to bigger numbers day-by-day.
A simple Susceptible - Infected - Aids Patient disease model.
A simple Susceptible - Infected - Aids Patient disease model.
 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

This is reproduction of the tutorial exercise 1, Disease Dynamics.
This is reproduction of the tutorial exercise 1, Disease Dynamics.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Aids Patient disease model.
A simple Susceptible - Infected - Aids Patient disease model.
 A Susceptible-Infected-Recovered (SIR) disease model with herd immunity and isolation policies.

A Susceptible-Infected-Recovered (SIR) disease model with herd immunity and isolation policies.

 SIR model with herd immunity - Metrics by Suresh Vunnam   A Susceptible-Infected-Recovered (SIR) disease model with herd immunity

SIR model with herd immunity - Metrics by Suresh Vunnam

A Susceptible-Infected-Recovered (SIR) disease model with herd immunity

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube