A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube

 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
Data from two rounds of using Disease Participatory Simulation in class. Participants + Androids = 39.  By adjusting Rate Constant, stocks and flows representation can be used to match data from either Trial 1 or Trial 2. An example of matching Trial 1 is shown when this simulation is run.  Graph of
Data from two rounds of using Disease Participatory Simulation in class. Participants + Androids = 39.  By adjusting Rate Constant, stocks and flows representation can be used to match data from either Trial 1 or Trial 2. An example of matching Trial 1 is shown when this simulation is run.  Graph of "Area" (Well * Sick) has the same shape as Rate Catching graph. The Rate Catching graph is much smaller because the Well * Sick values are multiplied by a small constant that is the Rate Constant.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A Susceptible - Infected - Recovered disease as a stock and flow model for COVID.
A Susceptible - Infected - Recovered disease as a stock and flow model for COVID.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.