A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
 SIR model with herd immunity - Metrics by Guy Laekman   A Susceptible-Infected-Recovered (SIR) disease model with herd immunity

SIR model with herd immunity - Metrics by Guy Laekman

A Susceptible-Infected-Recovered (SIR) disease model with herd immunity

Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
 A Susceptible-Infected-Recovered (SIR) disease model with herd immunity and isolation policies.

A Susceptible-Infected-Recovered (SIR) disease model with herd immunity and isolation policies.

Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

5 months ago
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
Semestrální projekt na operační a systémovou analýzu
Semestrální projekt na operační a systémovou analýzu
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

This model simulates a waterborne illness spread from a central reservoir. It illustrates the combination of System Dynamics (modeling pathogen levels in the reservoir) and Agent Based Modeling.    Make sure to check out the Map display to see the geographic clustering of disease incidence around th
This model simulates a waterborne illness spread from a central reservoir. It illustrates the combination of System Dynamics (modeling pathogen levels in the reservoir) and Agent Based Modeling.

Make sure to check out the Map display to see the geographic clustering of disease incidence around the reservoir.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.