for more information, contact Dr. Ann Stapleton at: stapletona@uncw.edu     Description:    A simple model for breeding plants from generation to generation, with one "yield" variable (e.g. height) and 4 combinations of plants from the parents. Simulation tracks the frequencies of each combination
for more information, contact Dr. Ann Stapleton at: stapletona@uncw.edu

Description:

A simple model for breeding plants from generation to generation, with one "yield" variable (e.g. height) and 4 combinations of plants from the parents. Simulation tracks the frequencies of each combination in each generation as well as the overall average height by generation.

Adjust all sliders before beginning simulation. Make sure the A1A2 parameters are equal to the A2A1 parameters.
 
 Adapted from Fig 13.1 p.523 of the Book: James A. Forte ( 2007),  Human Behavior and The Social Environment: Models, Metaphors and Maps for Applying Theoretical Perspectives to Practice   Thomson Brooks/Cole Belmont ISBN 0-495-00659-9

Adapted from Fig 13.1 p.523 of the Book: James A. Forte ( 2007), Human Behavior and The Social Environment: Models, Metaphors and Maps for Applying Theoretical Perspectives to Practice  Thomson Brooks/Cole Belmont ISBN 0-495-00659-9

10 months ago
Our computer model details the change in allele frequency of resistant mosquitoes in Africa when the government began spraying DDT. The few mosquitoes that naturally survived the chemical sprays reproduced, and created a large population of resistant mosquitoes. When DDT was sprayed later to prevent
Our computer model details the change in allele frequency of resistant mosquitoes in Africa when the government began spraying DDT. The few mosquitoes that naturally survived the chemical sprays reproduced, and created a large population of resistant mosquitoes. When DDT was sprayed later to prevent the spread of malaria, the DDT was not as effective because of the large amount of DDT-resistant phenotypes in the population.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
Simple mass balance model for lakes based on the Vollenweider equation:  dMw/dt = Min - sMw + pMs - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.  This version considers mercury, and adds diagenesis, using
Simple mass balance model for lakes based on the Vollenweider equation:

dMw/dt = Min - sMw + pMs - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.

This version considers mercury, and adds diagenesis, using an extra state variable (mercury in the sediment), and incorporates desorption processes that release mercury trapped in the sediment back to the water column.

The temporal dynamics of the model simulate the typical development of pollution in time.

1. Low loading, low Hg concentration in lake
2. High loading, increasing Hg concentration in lake
3. Desorption rate is low, Hg in sediment increases
4. Measures implemented for source control, loading reduces
5. Hg in lake gradually decreases, but below a certain point, desorption increases, and lake Hg concentration does not improve
6. Recovery only occurs when the secondary load in the sediment is strongly reduced.
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?


The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
Federal  University  UFRN  , Brazil   chemical  Engineering  Analysis of Environmental Systems  solid  residuos   for northeat brasil
Federal  University  UFRN  , Brazil   chemical  Engineering 
Analysis of Environmental Systems  solid  residuos   for northeat brasil

This model provides a dynamic simulation of the Sverdrup (1953) paper on the vernal blooming of phytoplankton.  The model simulates the dynamics of the mixed layer over the year, and illustrates how it's depth variation leads to conditions that trigger the spring bloom. In order for the bloom to occ
This model provides a dynamic simulation of the Sverdrup (1953) paper on the vernal blooming of phytoplankton.

The model simulates the dynamics of the mixed layer over the year, and illustrates how it's depth variation leads to conditions that trigger the spring bloom. In order for the bloom to occur, production of algae in the water column must exceed respiration.

This can only occur if vertical mixing cannot transport algae into deeper, darker water, for long periods, where they are unable to grow.

Sverdrup, H.U., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Int. Exp. Mer, 18: 287-295
 The model starts in 1900. In the year 2000 you get the chance to set a new emission target and nominal time to reach it. Your aim is to have atmospheric CO2 stabilise at about 400 ppmv in 2100.  From Sterman, John D. (2008)  Risk Communication on Climate:  Mental Models and Mass Balance.  Science 3
The model starts in 1900. In the year 2000 you get the chance to set a new emission target and nominal time to reach it. Your aim is to have atmospheric CO2 stabilise at about 400 ppmv in 2100.  From Sterman, John D. (2008)  Risk Communication on Climate:  Mental Models and Mass Balance.  Science 322 (24 October): 532-533. Older version of IM-9283.
 Clone pannirbrof Biogas to Energy | Insight Maker  https://insightmaker.com/insight/114792/Clone-pannirbrof-Biogas-to-Energy   Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus conce
Clone pannirbrof Biogas to Energy | Insight Maker https://insightmaker.com/insight/114792/Clone-pannirbrof-Biogas-to-Energy 
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.


Ecocity model , Joanna