System Zoo Z103: Exponential growth and decay from System Zoo 1 by Hartmut Bossel
System Zoo Z103: Exponential growth and decay from System Zoo 1 by Hartmut Bossel
Model Z605 Miniworld, from System Zoo 3 by Hartmut Bossel
Model Z605 Miniworld, from System Zoo 3 by Hartmut Bossel
​System Zoo Z412 Tourism Dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
​System Zoo Z412 Tourism Dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources


 System Zoo Z102: System state and state change from System Zoo 1 by Hartmut Bossel

System Zoo Z102: System state and state change from System Zoo 1 by Hartmut Bossel

 Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

Based on System Zoo EZ411 Tourist.mdl Vensim model. Caroline Brennan 21/02/2018.
Based on System Zoo EZ411 Tourist.mdl Vensim model. Caroline Brennan 21/02/2018.
Insight Maker model based on the Z415 System Zoo model originally developed in Vensim. Adaptation of this model. The adaptation involves adding sliders to improve interaction with the model. This model does not include findings of additional resource reserves. In that respect it is static.
Insight Maker model based on the Z415 System Zoo model originally developed in Vensim. Adaptation of this model. The adaptation involves adding sliders to improve interaction with the model.
This model does not include findings of additional resource reserves. In that respect it is static.
System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel
System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel
 This models the progressive decline of the ability for self-reliance and the growing dependence on outside help. ​Z508 p39-42 System Zoo 3 by Hartmut Bossel. Strong outside help causes a collapse of self-help capacity. Weak outside help produces a stable combination of wellbeing and self-help capac

This models the progressive decline of the ability for self-reliance and the growing dependence on outside help. ​Z508 p39-42 System Zoo 3 by Hartmut Bossel. Strong outside help causes a collapse of self-help capacity. Weak outside help produces a stable combination of wellbeing and self-help capacity.

 Attempting to outdo an opponent leads to escalation. A weaker response leads to De-escalation. A slightly more complex  form of  Insight 972 .  ​Z508 p36-38 System Zoo 3 by Hartmut Bossel.

Attempting to outdo an opponent leads to escalation. A weaker response leads to De-escalation. A slightly more complex  form of Insight 972.  ​Z508 p36-38 System Zoo 3 by Hartmut Bossel.

 Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example  IM-9010

Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example IM-9010

System Zoo Z409 Fishery dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources    Fishing is a classic example for use of a renewable resource. Unless overfished, fish populations If is hardly by fishing, then the fish population will persist at a constant
System Zoo Z409 Fishery dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

Fishing is a classic example for use of a renewable resource. Unless overfished, fish populations If is hardly by fishing, then the fish population will persist at a constant size corresponding to its specific ecological envi­ ronment If the stock is overfished, the juvenile generation becomes too small to fully replace the adult generation. If overfishing continues. the population cannot recover and will collapse in short time. Even if fish catch stops now/, it could take decades until the fish population recovers to its original size if it hasn't become extinct meanwhile. In many of the world overtlshing has led, and still leads, to the complete collapse of formerly huge tlsh populations: herring in the North Sea, codtlsh in the Northern Atlantic. tuna, whales to name only a few. With the collapse of fish stocks came the collapse of the t1shing industry in many regions. Employment and
incomes disappeared: whole regions (like Newfoundland) lost their economic base.​
 Z207 from Hartmut Bossel System Zoo 1 p103-107  After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic behavior

Z207 from Hartmut Bossel System Zoo 1 p103-107


After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic behavior
 Perceptual Control Theory Model of Balancing an Inverted Pendulum. See  Kennaway's slides  on Robotics. as well as PCT example WIP notes. Compare with  IM-1831  from Z209 from Hartmut Bossel's System Zoo 1 p112-118

Perceptual Control Theory Model of Balancing an Inverted Pendulum. See Kennaway's slides on Robotics. as well as PCT example WIP notes. Compare with IM-1831 from Z209 from Hartmut Bossel's System Zoo 1 p112-118

 System Zoo Z404 Prey and two Predator Populations from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources     Often a single prey population is the source of food for several  competing predators (e.g. mice as prey of foxes and birds of prey)​. Here again a reliabl
System Zoo Z404 Prey and two Predator Populations from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

Often a single prey population is the source of food for several  competing predators (e.g. mice as prey of foxes and birds of prey)​. Here again a reliable intuitive assessment of long-term development resulting from the particular system relationship is impossible. A simulation model can assist in recognizing development trends inherent in the system structure even if in reality a variety of other factors determine the development and may cause it to proceed on a somewhat different path.
Based on the Market and Price simulation model in System Zoo 3, Z504. In this model the profit calculations were not realistic. They were based on the per unit profit, which does not take items not sold into account. Also the model was not very clear on profit since it was included in the total prod
Based on the Market and Price simulation model in System Zoo 3, Z504. In this model the profit calculations were not realistic. They were based on the per unit profit, which does not take items not sold into account. Also the model was not very clear on profit since it was included in the total production costs and consequently in the unit costs and subsequently profit was calculated by subtracting unit costs of the market price. Thus profit had a double layer which does not make the model better accessible. I have tried to remedy both in this simplified version.
4 12 months ago
Oscillator with limit cycle from Z202 System Zoo 1 p84-87
Oscillator with limit cycle from Z202 System Zoo 1 p84-87