The System Dynamics Model presents the the COVID-19 status in Сhina
The System Dynamics Model presents the the COVID-19 status in Сhina
 Introduction:  This model aims to show that how the Tasmania government's COVID-19 policy can address the spread of the pandemic and in what way these policies can damage the economy.        Assumption:    Variables such as infection rate, death rate and the recovery rate are influenced by the actu
Introduction:
This model aims to show that how the Tasmania government's COVID-19 policy can address the spread of the pandemic and in what way these policies can damage the economy.

Assumption:
Variables such as infection rate, death rate and the recovery rate are influenced by the actual situation.
The government will implement stricter travel bans and social distant policies as there are more cases.
Government policies reduce infection and limit economic growth at the same time.
A greater number of COVID-19 cases has a negative effect on the economy.

Interesting insights:
A higher testing rate will make the infection increase and the infection rate will slightly increase as well. 
Government policies are effective to lower the infection, however, they will damage the local economy. While the higher number of COVID-19 cases also influences economic activities.
 The complex
model reflects the COVID-19 outbreak in Burnie, Tasmania. The model explains
how the COVID-19 outbreak will influence the government policies and economic
impacts. The infected population will be based on how many susceptible, infected,
and recovered individuals in Burnie. It influences

The complex model reflects the COVID-19 outbreak in Burnie, Tasmania. The model explains how the COVID-19 outbreak will influence the government policies and economic impacts. The infected population will be based on how many susceptible, infected, and recovered individuals in Burnie. It influences the probability of infected population meeting with susceptible individuals.

The fatality rate will be influenced by the elderly population and pre-existing medical conditions. Even though individuals can recover from COVID-19 disease, some of them will have immunity loss and become part of the susceptible individuals, or they will be diagnosed with long term illnesses (mental and physical). Thus, these variables influence the number of confirmed cases in Burnie and the implementation of government policies.

The government policies depend on the confirmed COVID-19 cases. The government policies include business restrictions, lock down, vaccination and testing rate. These variables have negative impacts on the infection of COVID-19 disease. However, these policies have some negative effects on commercial industry and positive effects on e-commerce and medical industry. These businesses growth rate can influence the economic growth of Burnie with the economic

Most of the variables are adjustable with the slider provided below. They can be adjusted from 0 to 1, which illustrates the percentages associated with the specific variables. They can also be adjusted to three decimal points, i.e., from 0.1 to 0.001.


Assumptions

- The maximum population of Burnie is 20000.
- The maximum number of infected individuals is 100.
- Government policies are triggered when the COVID-19 cases reach 10 or above.
- The government policies include business restrictions, lock down, vaccination and testing rates only. Other policies are not being considered under this model.
- The vaccination policy implemented by the government is compulsory.
- The testing rate is set by the government. The slider should not be changed unless the testing rate is adjusted by the government.
- The fatality rate is influenced by the elderly population and pre-existing medical conditions only. Other factors are not being considered under this model.
- People who recovered from COVID-19 disease will definitely suffer form immunity loss or any other long term illnesses.
- Long term illnesses include mental illnesses and physical illnesses only. Other illnesses are not being considered under this model.
- Economic activities are provided with an assumption value of 1000.
- The higher the number of COVID-19 cases, the more negative impact they have on the economy of Burnie. 


Interesting Insights

A higher recovery rate can decrease the number of COVID-19 cases as well as the probability of infected population meeting with susceptible persons, but it takes longer for the economy to recover compared to a lower recovery rate. A higher recovery rate can generate a larger number of people diagnosed with long term illnesses.

Testing rate triggers multiple variables, such as government policies, positive cases, susceptible and infected individuals. A lower testing rate can decrease the COVID-19 confirmed cases, but it can increase the number of susceptible people. And a higher testing rate can trigger the implementation of government policies, thus decreasing the infection rate. As the testing rate has a strong correlation with the government policies, it can also influence the economy of Burnie. 

Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022     Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :   Sabilla Halimatus Mahmud   Nurul Widyastuti Muhammad Na
Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022

Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :
Sabilla Halimatus Mahmud
Nurul Widyastuti
Muhammad Najib



Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
Simulation of the spread of COVID-19 in Wuhan.
Simulation of the spread of COVID-19 in Wuhan.
  This model aims to show that how Tasmania government's Covid-19 policy can address the spread of the pandemic and in what way these policy can damage the economy.     This model assumes that if the COVID-19 cases are more than 10, the government will take action such as quarantine and lockdown at
This model aims to show that how Tasmania government's Covid-19 policy can address the spread of the pandemic and in what way these policy can damage the economy.

This model assumes that if the COVID-19 cases are more than 10, the government will take action such as quarantine and lockdown at the area. These policy can indirectly affect the local economy in many different way. At the same time, strict policy may be essential for combating Covid-19.

From the simulation of the model, we can clearly see that the economy of Burine will be steady increase when government successfully reduces the COVID-19 cased and make it spreading slower.

Interesting finding: In this pandemic, the testing rate and the recovery rate are important to stop Covid-19 spreading. Once the cases of Covid-19 less than 10, the government might stop intervention and the economy of Burnie will back to normal.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

corona virus model for spread.   correlated to US and Italy
corona virus model for spread.
correlated to US and Italy
 This insight began as a March 22nd Clone of "Italian COVID 19 outbreak control"; thanks to  Gabo HN  for the original insight. The following links are theirs:      Initial data from:  Italian data [ link ] (Mar 4)  Incubation estimation [ link ]        Andy Long   Northern Kentucky University  May

Initial data from:
Italian data [link] (Mar 4)
Incubation estimation [link]

Northern Kentucky University
May 2nd, 2020

This is an update of our model from April 9th, 2020. As we prepare for our final exam, I read a story in The Guardian about Italy's struggle to return to normalcy. The final paragraphs:

During the debate in the Senate on Thursday, the opposition parties grilled Conte. Ex-prime minister Matteo Renzi, who has called for less restraint in the reopening, remarked, “The people in Bergamo and Brescia who are gone, those who died of the virus, if they could speak, they’d tell us to relaunch the country for them, in their honour.”

Renzi’s controversial statement was harshly criticised by doctors who warned that the spread of the disease, which, as of Thursday, had killed almost 30,000 people in the country and infected more than 205,000 [ael: my emphasis], was not over and that a misstep could take the entire country back to mid-March coronavirus levels.

“We risk a new wave of infections and outbreaks if we’re not careful,” said Tullio Prestileo, an infectious diseases specialist at Palermo’s Benefratelli Hospital. “If we don’t realise this, we could easily find ourselves back where we started. In that case, we may not have the strength to get back up again.”

I have since updated the dataset, to include total cases from February 24th to May 2nd. I went to Harvard's Covid-19 website for Italy  and and then to their daily updates, available at github. I downloaded the regional csv file for May 2nd,  which had regional totals (21 regions); I grabbed the column "totale_casi" and did some processing to get the daily totals from the 24th of February to the 2nd of May.

The cases I obtained in this way matched those used by Gabo HN.

The initial data they used started on March 3rd (that's the 0 point in this Insight).

You can get a good fit to the data through April 9th by choosing the following (and notice that I've short-circuited the process from the Infectious to the Dead and Recovered). I've also added the Infectious to the Total cases.

The question is: how well did we do at modeling this epidemic through May 2nd (day 60)? And how can we change the model to do a better job of capturing the outbreak from March 3rd until May 2nd?

Incubation Rate:  .025
R0: 3
First Lockdown: IfThenElse(Days() == 5, 16000000, 0)
Total Lockdown: IfThenElse(Days() >= 7, 0.7,0)

(I didn't want to assume that the "Total Lockdown" wasn't leaky! So it gets successively tighter, but people are sloppy, so it simply goes to 0 exponentially, rather than completely all at once.)

deathrate: .01
recoveryrate: .03

"Death flow": [deathrate]*[Infectious]
"Recovery flow": [recoveryrate]*[Infectious]

Total Reported Cases: [Dead]+[Surviving / Survived]+[Infectious]



Resources:
This model estimates the deaths due to COVID19 in Bangalore City.  Assumptions:  City has a population = 80 Million  Initial infected population = 10  Probability of infection = 8%  Contact rate in population = 6  Average duration of recovery = 10 days  Death rate = 1%  Quarantine rate = 80%  Delay
This model estimates the deaths due to COVID19 in Bangalore City. 
Assumptions:
City has a population = 80 Million
Initial infected population = 10
Probability of infection = 8%
Contact rate in population = 6
Average duration of recovery = 10 days
Death rate = 1%
Quarantine rate = 80%
Delay in quarantine = 5 days
The model is built to demonstrates how Burnie Tasmania can deal with a new COVID-19 outbreaks, taking government policies and economic effects into account. The susceptible people are the local Burnie residents. If residents were infected, they would either recovered or dead. However, even they do r
The model is built to demonstrates how Burnie Tasmania can deal with a new COVID-19 outbreaks, taking government policies and economic effects into account.
The susceptible people are the local Burnie residents. If residents were infected, they would either recovered or dead. However, even they do recover, there is a chance that they will get infected again if immunity loss occurs.
From the simulation result we can see that with the implementation of local government policies including travel ban and social distancing,  the number of infected people will decrease. The number of recovered people will increase in the first 5 weeks but then experience a decrease.
In addition, with the implementation of local government policy, the economic environment in Burnie will be relatively stable when the number of COVID-19 cases is stable.