Model description:     This model is designed to simulate the Covid-19 outbreak in Burnie, Tasmania by estimating several factors such as exposed population, infection rate, testing rate, recovery rate, death rate and immunity loss. The model also simulates the measures implemented by the governm

Model description: 

This model is designed to simulate the Covid-19 outbreak in Burnie, Tasmania by estimating several factors such as exposed population, infection rate, testing rate, recovery rate, death rate and immunity loss. The model also simulates the measures implemented by the government which will impact on the local infection and economy. 

 

Assumption:

Government policies will reduce the mobility of the population as well as the infection. In addition, economic activities in the tourism and hospitality industry will suffer negative influences from the government measures. However, essential businesses like supermarkets will benefit from the health policies on the contrary.

 

Variables:

Infection rate, recovery rate, death rate, testing rate are the variables to the cases of Covid-19. On the other hand, the number of cases is also a variable to the government policies, which directly influences the number of exposed. 

 

The GDP is dependent on the variables of economic activities. Nonetheless, the government’s lockdown measure has also become the variable to the economic activities. 

 

Interesting insights:

Government policies are effective to curb infection by reducing the number of exposed when the case number is greater than 10. The economy becomes stagnant when the case spikes up but it climbs up again when the number of cases is under control. 

This model is cloned thru an Agent-Based Modeling Simulation of "Covid-19 (ABM)_VHK" Model by Venkata Habiram Koppaka last April 2020 for presenting the Pandemic COVID-19 Disease. This ABM Simulation aims to represent the trend of COVID-19 infection and death rate (dynamics) at Puerto Princesa City,
This model is cloned thru an Agent-Based Modeling Simulation of "Covid-19 (ABM)_VHK" Model by Venkata Habiram Koppaka last April 2020 for presenting the Pandemic COVID-19 Disease. This ABM Simulation aims to represent the trend of COVID-19 infection and death rate (dynamics) at Puerto Princesa City, PALAWAN using the June 3, 2021 data of the CESU-PPC.
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy, though, of higher detected cases is negative. 




39 4 months ago
    INTRODUCTION   

 This is a balanced loop model that demonstrates how COVID
19 outbreak in Burnie and the response of the government (e.g. by enforcing health
policies: Lockdown; quarantine, non-necessary business closure; border closure)
affect the local economy.  This model has 13 positive loo

INTRODUCTION

This is a balanced loop model that demonstrates how COVID 19 outbreak in Burnie and the response of the government (e.g. by enforcing health policies: Lockdown; quarantine, non-necessary business closure; border closure) affect the local economy.  This model has 13 positive loops and seven negative loops.  Government response is dependent on the number of reported COVID-19 cases which in turn thought to be dependent on the testing rates less those who recovered from COVID 19 and dead. Economic activity is dependent on the economic growth rate, increased in online shopping, increased in unemployment, number of people who do not obey the rules, COVID 19 cases and health policies.

 ASSUMPTIONS

 · Both infection and economic growth is reduced by enforcing government policies

 · However, the negative effect of government policies is reduced by the number of people who do not obey government health policies

 · Govt policies are enforced when the reported COVID-19 case are 10 or greater.

 ·     Number of COVID cases reported is dependent on the testing rates less those who recovered and dead.

 ·   The higher number of COVID-19 cases have a negative effect on local economy. This phenomena is known as negative signalling. 

 ·   Government policies have a negative effect on economic activity because health policies limit both social and economic activities which directly or indirectly affect the economy in Burnie .  

 ·  This negative effect is somewhat reduced by the increase in online shopping and the number of people who do not obey heath rules.

 INTERESTING INSIGHTS

The test ratings seem to play a vital role in controlling COVID-19 outbreak. Higher Rates of COVID testings decrease the number of COVID 19 deaths and number of infected. This is because higher rates of testing accelerate the government involvement (as the government intervention is triggered earlier, 10 COVID cases mark is reached earlier). Delaying the government intervention by reducing the COVID testing rates increases the death rates and number of infected. 

Increased testing rates allow the figures (deaths, susceptible, infected) to reach a plateau quickly. 





Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022     Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :   Sabilla Halimatus Mahmud   Nurul Widyastuti Muhammad Na
Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022

Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :
Sabilla Halimatus Mahmud
Nurul Widyastuti
Muhammad Najib



  Introduction:   This simulation model demonstrates the outbreak of Covid-19 in Burnie, Tasmania and how the corresponding government’s responses affect the spreading of Covid-19. Meanwhile, this model also shows how the economy in Burnie is influenced by the impacts of both Covid-19 and government
Introduction:
This simulation model demonstrates the outbreak of Covid-19 in Burnie, Tasmania and how the corresponding government’s responses affect the spreading of Covid-19. Meanwhile, this model also shows how the economy in Burnie is influenced by the impacts of both Covid-19 and government policies.

Variables: 
This simulation contains some relevant variables as follow:

Variables in Covid-19 outbreaks: (1) Infection rate, (2) Recovery rate, (3) Death rate, (4) Immunity loss rate

Variables in Government policies: (1) Vaccination rate, (2) Lockdown, (3) Travel ban, (4)Quarantine

Variables in Economy: (1) E-commerce business, (2) Unemployment rate, (3) Economic growth rate.

Assumption:
Government responses would be triggered when reported Covid-19 cases are at least 10.

The government policies reduce the spreading of Covid-19, but they would also limit economic development at the same time due to the negative impact of the policies on the economy is greater than the positive impact.

The increase in reported Covid-19 cases would negatively affect economic growth.

Interesting Insights:
The first finding is that the death number would keep increasing even though the infection rate has decreased, but with stronger government policies (such as implementing a coefficient over 25%), no more death numbers will occur caused by Covid-19.

The second finding is that as government policies limit business activities, with the increasing number of reported Covid-19 cases, economic growth will suffer a severe blow even if e-commerce grows, it can’t make up for this economic loss.
 This insight began as a March 22nd Clone of "Italian COVID 19 outbreak control"; thanks to  Gabo HN  for the original insight. The following links are theirs:      Initial data from:  Italian data [ link ] (Mar 4)  Incubation estimation [ link ]        Andy Long   Northern Kentucky University  May

Initial data from:
Italian data [link] (Mar 4)
Incubation estimation [link]

Northern Kentucky University
May 2nd, 2020

This is an update of our model from April 9th, 2020. As we prepare for our final exam, I read a story in The Guardian about Italy's struggle to return to normalcy. The final paragraphs:

During the debate in the Senate on Thursday, the opposition parties grilled Conte. Ex-prime minister Matteo Renzi, who has called for less restraint in the reopening, remarked, “The people in Bergamo and Brescia who are gone, those who died of the virus, if they could speak, they’d tell us to relaunch the country for them, in their honour.”

Renzi’s controversial statement was harshly criticised by doctors who warned that the spread of the disease, which, as of Thursday, had killed almost 30,000 people in the country and infected more than 205,000 [ael: my emphasis], was not over and that a misstep could take the entire country back to mid-March coronavirus levels.

“We risk a new wave of infections and outbreaks if we’re not careful,” said Tullio Prestileo, an infectious diseases specialist at Palermo’s Benefratelli Hospital. “If we don’t realise this, we could easily find ourselves back where we started. In that case, we may not have the strength to get back up again.”

I have since updated the dataset, to include total cases from February 24th to May 2nd. I went to Harvard's Covid-19 website for Italy  and and then to their daily updates, available at github. I downloaded the regional csv file for May 2nd,  which had regional totals (21 regions); I grabbed the column "totale_casi" and did some processing to get the daily totals from the 24th of February to the 2nd of May.

The cases I obtained in this way matched those used by Gabo HN.

The initial data they used started on March 3rd (that's the 0 point in this Insight).

You can get a good fit to the data through April 9th by choosing the following (and notice that I've short-circuited the process from the Infectious to the Dead and Recovered). I've also added the Infectious to the Total cases.

The question is: how well did we do at modeling this epidemic through May 2nd (day 60)? And how can we change the model to do a better job of capturing the outbreak from March 3rd until May 2nd?

Incubation Rate:  .025
R0: 3
First Lockdown: IfThenElse(Days() == 5, 16000000, 0)
Total Lockdown: IfThenElse(Days() >= 7, 0.7,0)

(I didn't want to assume that the "Total Lockdown" wasn't leaky! So it gets successively tighter, but people are sloppy, so it simply goes to 0 exponentially, rather than completely all at once.)

deathrate: .01
recoveryrate: .03

"Death flow": [deathrate]*[Infectious]
"Recovery flow": [recoveryrate]*[Infectious]

Total Reported Cases: [Dead]+[Surviving / Survived]+[Infectious]



Resources:
A simple SI (Susceptible-Infectious) model that captures the dynamics of COVID-19.
A simple SI (Susceptible-Infectious) model that captures the dynamics of COVID-19.
69 2 months ago
This model is comparing healthy and sick residents in Burnie, Tasmania after the Covid-19 Outbreak in 2020. It will also show how the Burnie economy is effected by the disease, how the Government Health Policies are implemented and how they are enforced.  This model is based on the SIR, Susceptible,
This model is comparing healthy and sick residents in Burnie, Tasmania after the Covid-19 Outbreak in 2020. It will also show how the Burnie economy is effected by the disease, how the Government Health Policies are implemented and how they are enforced.

This model is based on the SIR, Susceptible, Infection, Recovery (or Removed) These are the three possible states related to the members of the Burnie population when a contagious decease spreads.

The Government/Government Health Policy, played a big part in the successful decrease in Covid-19 infections. The Government enforced the following.
- No travel (interstate or international)
- Isolation within the residents homes
- Social distancing by 1.5m
- Quarantine
- Non essential companies to be temporarily closed
- Limitations on public gatherings
- And limits on time and kilometers aloud to travel from ones home within a local community

This resulted in lower reported infection rates of Covid-19 and higher recovery rates.

In my opinion:
When the first case was reported the Government could have been even faster to enforce these rules to decrease the fatality rates further for the Burnie, population.  

Assumption: Government policies were only triggered when 10 cases were recorded.
Also, more cases that had been recorded effected the economic growth during this time.

Interesting Findings: In the simulation it shows as the death rates increases towards the end of the week, the rate of testing goes down. You would think that the government would have enforced a higher testing rate over the duration of this time to decrease the number of infections, exposed which would increase the recovery rates faster and more efficiently.  

Figures have been determined by the population of Burnie being 19,380 at the time of assignment.

 Simple epidemiological model for Burnie, Tasmania   SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts           Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected
Simple epidemiological model for Burnie, Tasmania
SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).