Model description:     This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania. It also tell us the impact of economic policies on outbreak models and economic growth.       Variables:    The simulation takes into account the following variables and its adjusting ra

Model description:

This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania. It also tell us the impact of economic policies on outbreak models and economic growth.

 

Variables:

The simulation takes into account the following variables and its adjusting range: 

 

On the left of the model, the variables are: infection rate( from 0 to 0.25), recovery rate( from 0 to 1), death rate( from 0 to 1), immunity loss rate( from 0 to 1), test rate ( from 0 to 1), which are related to Covid-19.

 

In the middle of the model, the variables are: social distancing( from 0 to 0.018), lock down( from 0 to 0.015), quarantine( from 0 to 0.015), vaccination promotion( from 0 to 0.019), border restriction( from 0 to 0.03), which are related to governmental policies.

 

On the right of the model, the variables are: economic growth rate( from 0 to 0.3), which are related to economic growth.

 

Assumptions:

(1) The model is influenced by various variables and can produce different results. The following values based on the estimation, which differ from actual values in reality.

 

(2) Here are just five government policies that have had an impact on infection rates in epidemic models. On the other hand, these policies will also have an impact on economic growth, which may be positive or negative.

 

(3) Governmental policy will only be applied when reported cases are 10 or more. 

 

(4) This model lists two typical economic activities, namely e-commerce and physical stores. Government policies affect these two types of economic activity separately. They together with economic growth rate have an impact on economic growth.

 

Enlightening insights:

(1) In the first two weeks, the number of susceptible people will be significantly reduced due to the high infection rate, and low recovery rate as well as government policies. The number of susceptible people fall slightly two weeks later. Almost all declines have a fluctuating downward trend.

 

(2) Government policies have clearly controlled the number of deaths, suspected cases and COVID-19 cases.

 

(3) The government's restrictive policies had a negative impact on economic growth, but e-commerce economy, physical stores and economic growth rate all played a positive role in economic growth, which enabled the economy to stay in a relatively stable state during the epidemic.

 Using the  reading assignment from El-Taliawi and Hartley on using a SSM for COVID-19  follow the steps for SSM to include:  1)  Describe the Problem (unstructured).  2)  Develop a Root Definition for the COVID-19 problem space by identifying the three elements:  what, how, why.   A System to do X,

Using the reading assignment from El-Taliawi and Hartley on using a SSM for COVID-19 follow the steps for SSM to include:

1)  Describe the Problem (unstructured).

2)  Develop a Root Definition for the COVID-19 problem space by identifying the three elements:  what, how, why.   A System to do X, by (means of) Y, in order to achieve Z.

        X - What the system does

        Y -  How it does it

        Z - Why is it being done

(see slide 33 in the Systems Thinking Workshop reading)

3)  Identify the Perspectives (CATWOE)

4)  Develop a basic Systemigram / Rich Picture to tell the story.

Submit your assignment as a Word document or PDF that addresses #1-4.  You can use InsightMaker to create your systemigram or use the Systemitool which you can access at SERC hereLinks to an external site.

If you use InsightMaker, try presenting your results as a Story using the Storytelling capabilityLinks to an external site..

You will have TWO WEEKS to complete this assignment (due on March 7th).

This model is to show the status of numbers of infected people, recovered people and deaths during COVID-19 in Burnie Australia. It also shows impact on the growth of economy.       Variables    The infection rate and the percentage of people washing their hands are influencing the infected number o
This model is to show the status of numbers of infected people, recovered people and deaths during COVID-19 in Burnie Australia. It also shows impact on the growth of economy. 

Variables
The infection rate and the percentage of people washing their hands are influencing the infected number of people. Also, there are death rate and recovery rate and immunity lost rate determining the numbers of deaths, recovered and infected-again people.  
for the economy growth, there are several factors, including unemployment rate, infection rate, economic growth rate and government health policy. 

Perspective
After some time, people will recovered, also the economic activities. 
  Introduction:   This simulation model demonstrates the outbreak of Covid-19 in Burnie, Tasmania and how the corresponding government’s responses affect the spreading of Covid-19. Meanwhile, this model also shows how the economy in Burnie is influenced by the impacts of both Covid-19 and government
Introduction:
This simulation model demonstrates the outbreak of Covid-19 in Burnie, Tasmania and how the corresponding government’s responses affect the spreading of Covid-19. Meanwhile, this model also shows how the economy in Burnie is influenced by the impacts of both Covid-19 and government policies.

Variables: 
This simulation contains some relevant variables as follow:

Variables in Covid-19 outbreaks: (1) Infection rate, (2) Recovery rate, (3) Death rate, (4) Immunity loss rate

Variables in Government policies: (1) Vaccination rate, (2) Lockdown, (3) Travel ban, (4)Quarantine

Variables in Economy: (1) E-commerce business, (2) Unemployment rate, (3) Economic growth rate.

Assumption:
Government responses would be triggered when reported Covid-19 cases are at least 10.

The government policies reduce the spreading of Covid-19, but they would also limit economic development at the same time due to the negative impact of the policies on the economy is greater than the positive impact.

The increase in reported Covid-19 cases would negatively affect economic growth.

Interesting Insights:
The first finding is that the death number would keep increasing even though the infection rate has decreased, but with stronger government policies (such as implementing a coefficient over 25%), no more death numbers will occur caused by Covid-19.

The second finding is that as government policies limit business activities, with the increasing number of reported Covid-19 cases, economic growth will suffer a severe blow even if e-commerce grows, it can’t make up for this economic loss.
   Description         The model shows Covid-19 situations in Burnie, Tasmania. Under such circumstances, how the state government deals with the pandemic and how economy changes will be illustrated. The relationship between government policy and economic activities under Covid-19 outbreaks will be

Description

 

The model shows Covid-19 situations in Burnie, Tasmania. Under such circumstances, how the state government deals with the pandemic and how economy changes will be illustrated. The relationship between government policy and economic activities under Covid-19 outbreaks will be explained through different variables.


Assumptions

 

Government policy negatively affects Covid-19 outbreaks and economic activities.

Covid-19 outbreaks also has negative effects on economic growth.

 

Parameters

 

There are several fixed and adjusted variables.

 

1.     COVID-19 Outbreaks

Fixed variables: infection rate, recovery rate

Adjusted variables: immunity loss rate

 

2.     Government Policy

Adjusted variables: lockdown, social distancing, testing, vaccination

3.     Economic impact

Fixed variables: tourism

Adjusted variables: economic growth rate

 

Interesting Insights

 

Tourism seems to be the most effective way to bring back economic growth in Tasmania, and it takes time to recover from Covid-19.

 

Government policies tend to have negative influences on economic growth.

   Introduction:        This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates a

Introduction:

This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates and government policies. Although government policy has brought the Covid-19 outbreak under control, it has had a negative impact on the financial system, and the increase in COVID-19 cases has had a negative impact on economic growth.

 

Assumptions:

The model is based on different infection rates, including infection rate, mortality rate, detection rate and recovery rate. There is a difference between a real case and a model. Since the model setup will only be initiated when 10 cases are reported, the impact on infection rates and economic growth will be reduced.

 

Interesting insights:

Even as infection rates fall, mortality rates continue to rise. However, the rise in testing rates and government health policies contribute to the stability of mortality. The model thinks that COVID-19 has a negative impact on offline industry and has a positive impact on online industry.

Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus