Insight diagram
This insight began as a March 22nd Clone of "Italian COVID 19 outbreak control"; thanks to Gabo HN for the original insight. The following links are theirs:

Initial data from:
Italian data [link] (Mar 4)
Incubation estimation [link]

Andy Long
Northern Kentucky University
May 2nd, 2020

This is an update of our model from April 9th, 2020. As we prepare for our final exam, I read a story in The Guardian about Italy's struggle to return to normalcy. The final paragraphs:

During the debate in the Senate on Thursday, the opposition parties grilled Conte. Ex-prime minister Matteo Renzi, who has called for less restraint in the reopening, remarked, “The people in Bergamo and Brescia who are gone, those who died of the virus, if they could speak, they’d tell us to relaunch the country for them, in their honour.”

Renzi’s controversial statement was harshly criticised by doctors who warned that the spread of the disease, which, as of Thursday, had killed almost 30,000 people in the country and infected more than 205,000 [ael: my emphasis], was not over and that a misstep could take the entire country back to mid-March coronavirus levels.

“We risk a new wave of infections and outbreaks if we’re not careful,” said Tullio Prestileo, an infectious diseases specialist at Palermo’s Benefratelli Hospital. “If we don’t realise this, we could easily find ourselves back where we started. In that case, we may not have the strength to get back up again.”

I have since updated the dataset, to include total cases from February 24th to May 2nd. I went to Harvard's Covid-19 website for Italy  and and then to their daily updates, available at github. I downloaded the regional csv file for May 2nd,  which had regional totals (21 regions); I grabbed the column "totale_casi" and did some processing to get the daily totals from the 24th of February to the 2nd of May.

The cases I obtained in this way matched those used by Gabo HN.

The initial data they used started on March 3rd (that's the 0 point in this Insight).

You can get a good fit to the data through April 9th by choosing the following (and notice that I've short-circuited the process from the Infectious to the Dead and Recovered). I've also added the Infectious to the Total cases.

The question is: how well did we do at modeling this epidemic through May 2nd (day 60)? And how can we change the model to do a better job of capturing the outbreak from March 3rd until May 2nd?

Incubation Rate:  .025
R0: 3
First Lockdown: IfThenElse(Days() == 5, 16000000, 0)
Total Lockdown: IfThenElse(Days() >= 7, 0.7,0)

(I didn't want to assume that the "Total Lockdown" wasn't leaky! So it gets successively tighter, but people are sloppy, so it simply goes to 0 exponentially, rather than completely all at once.)

deathrate: .01
recoveryrate: .03

"Death flow": [deathrate]*[Infectious]
"Recovery flow": [recoveryrate]*[Infectious]

Total Reported Cases: [Dead]+[Surviving / Survived]+[Infectious]



Resources:
  * https://annals.org/aim/fullarticle/2762808/incubation-period-coronavirus-disease-2019-covid-19-from-publicly-reported
Final Version of Italian COVID-19 outbreak
Insight diagram
COVID-19 SEIR Model (Indonesia values)
Insight diagram
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy, though, of higher detected cases is negative. 




Burnie COVID-19 outbreak demo model version 2
39 6 months ago
Insight diagram
Story Telling COVID19
Insight diagram
This model shows the COVID-19 outbreaks in Burnie and the Government intervention to alleviate the crisis and also how is the intervention affect the economy.

It is assumed that the Government intervention is triggered when the COVID-19 case is equal to or more than 10. 

Government intervention - lock down the state, suppress the development of COVID-19 effectively. It is related to most of people stay at home to reduce the exposure in public area.
On the other hand, it also bring the economy of Burnie in the recession, as no tourists, no dining out activities and decrease in money spending in the city.
Burnie COVID-19 outbreaks and economic impacts_Pui Chu Daisy Cheung 524767
Insight diagram
COVID-19 Model
Insight diagram
SEIR Model_John
Insight diagram
Өзіңдік жұмыс дұрысы
Insight diagram
The model here shows the COVID-19 outbreaks in Burnie Tasmania, which has impacted in the local economy. the relationship between COVID-19 and economic situation has been shown in the graph. Based on the susceptible analysis, people who usual go out are might have chance to meet susceptible people and have a high rate to be infected. The period of spreading can be controlled by keeping social distance and Government lockdown policy. 

Susceptible can be exposed by go out.  resident has a possibility to infect and be infected by others. people who might be die due to the lack of immunity. and others would recover and get the immune. 

Beside, the economy situation is proportionate to the recovery rate. If there are more recovery rate from the pandemic, the employment rate will be increased and the economy situation will recover as well.   
COVID-19 outbreak in Burnie, TAS. BMA708 Assignment 3
Insight diagram

The complex model reflects the COVID-19 outbreak in Burnie, Tasmania. The model explains how the COVID-19 outbreak will influence the government policies and economic impacts. The infected population will be based on how many susceptible, infected, and recovered individuals in Burnie. It influences the probability of infected population meeting with susceptible individuals.

The fatality rate will be influenced by the elderly population and pre-existing medical conditions. Even though individuals can recover from COVID-19 disease, some of them will have immunity loss and become part of the susceptible individuals, or they will be diagnosed with long term illnesses (mental and physical). Thus, these variables influence the number of confirmed cases in Burnie and the implementation of government policies.

The government policies depend on the confirmed COVID-19 cases. The government policies include business restrictions, lock down, vaccination and testing rate. These variables have negative impacts on the infection of COVID-19 disease. However, these policies have some negative effects on commercial industry and positive effects on e-commerce and medical industry. These businesses growth rate can influence the economic growth of Burnie with the economic

Most of the variables are adjustable with the slider provided below. They can be adjusted from 0 to 1, which illustrates the percentages associated with the specific variables. They can also be adjusted to three decimal points, i.e., from 0.1 to 0.001.


Assumptions

- The maximum population of Burnie is 20000.
- The maximum number of infected individuals is 100.
- Government policies are triggered when the COVID-19 cases reach 10 or above.
- The government policies include business restrictions, lock down, vaccination and testing rates only. Other policies are not being considered under this model.
- The vaccination policy implemented by the government is compulsory.
- The testing rate is set by the government. The slider should not be changed unless the testing rate is adjusted by the government.
- The fatality rate is influenced by the elderly population and pre-existing medical conditions only. Other factors are not being considered under this model.
- People who recovered from COVID-19 disease will definitely suffer form immunity loss or any other long term illnesses.
- Long term illnesses include mental illnesses and physical illnesses only. Other illnesses are not being considered under this model.
- Economic activities are provided with an assumption value of 1000.
- The higher the number of COVID-19 cases, the more negative impact they have on the economy of Burnie. 


Interesting Insights

A higher recovery rate can decrease the number of COVID-19 cases as well as the probability of infected population meeting with susceptible persons, but it takes longer for the economy to recover compared to a lower recovery rate. A higher recovery rate can generate a larger number of people diagnosed with long term illnesses.

Testing rate triggers multiple variables, such as government policies, positive cases, susceptible and infected individuals. A lower testing rate can decrease the COVID-19 confirmed cases, but it can increase the number of susceptible people. And a higher testing rate can trigger the implementation of government policies, thus decreasing the infection rate. As the testing rate has a strong correlation with the government policies, it can also influence the economy of Burnie. 

BMA708 COVID-19 Outbreak in Burnie, Tasmania
Insight diagram
Introduction:
This model aims to show that how the Tasmania government's COVID-19 policy can address the spread of the pandemic and in what way these policies can damage the economy.

Assumption:
Variables such as infection rate, death rate and the recovery rate are influenced by the actual situation.
The government will implement stricter travel bans and social distant policies as there are more cases.
Government policies reduce infection and limit economic growth at the same time.
A greater number of COVID-19 cases has a negative effect on the economy.

Interesting insights:
A higher testing rate will make the infection increase and the infection rate will slightly increase as well. 
Government policies are effective to lower the infection, however, they will damage the local economy. While the higher number of COVID-19 cases also influences economic activities.
Model of COVID-19 outbreak in Burnie_Guoyu Shen
Insight diagram
COVID-19 pandemic
Insight diagram
Explanation of the Model

The sample model demonstrate the COVID-19 outbreak in Burnie, Tasmania appearing how the government reacts by executing important health approaches and the impacts on the economy of the region

Assumptions

The economic growth rate is subordinate on the extent of the populace who can be exposed. The number of COVID-19 cases adversely impacts the economy. The government arrangement is activated when the COVID-19 cases are 10 or above

Interesting Insights

1. There is a positive relationship between exposure to COVID- 19 and economic growth rate. Since the more individuals go out, the more trade activity takes place and that ultimately results economic growth

2. Expanding the testing rate results
- Higher cases being recognized
- Strict  government intervention
- Less deaths

BMA708_Assignment3_Md Shihabul Islam_548056
Insight diagram
Pada Tugas mata kuliah Metode Penyelesaian Masalah dan Pemodelan , ditugaskan untuk membuat pemodelan penyebaran COVID-19 di negara yang dipilih, dan pada simulasi ini merupakan negara Indonesia

Dosen Pengampu :
Simulasi Pemodelan Penyebaran COVID-19 di Indonesia di Indonesia Dari Data Vaksinasi
Insight diagram
SEIR COVID-19 New Kl. 1
Insight diagram
Системная динамика COVID-19 в Казахстане в 2020 году
Insight diagram
Santa Maria Covid-19
Insight diagram
okonchatelny
Insight diagram
The System Dynamics Model presents the the COVID-19 status in Сhina
Covid-19 in China
Insight diagram
The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
SEIR - COVID-19 (v.1)
Insight diagram
COVID-19 SEIR Model (Indonesia values)
Insight diagram
Tugas 3_Thamara Shaifa Anwar_0441174000035_Pemodelan Transportasi Laut

Dosen Pengampu : Dr-Ing Ir. Setyo Nugroho
Pemodelan COVID-19 di Indonesia