This model estimates the deaths due to COVID19 in Bangalore City.  Assumptions:  City has a population = 80 Million  Initial infected population = 10  Probability of infection = 8%  Contact rate in population = 6  Average duration of recovery = 10 days  Death rate = 1%  Quarantine rate = 80%  Delay
This model estimates the deaths due to COVID19 in Bangalore City. 
Assumptions:
City has a population = 80 Million
Initial infected population = 10
Probability of infection = 8%
Contact rate in population = 6
Average duration of recovery = 10 days
Death rate = 1%
Quarantine rate = 80%
Delay in quarantine = 5 days
 This insight began as a March 22nd Clone of "Italian COVID 19 outbreak control"; thanks to  Gabo HN  for the original insight. The following links are theirs:      Initial data from:  Italian data [ link ] (Mar 4)  Incubation estimation [ link ]        Andy Long   Northern Kentucky University  May

Initial data from:
Italian data [link] (Mar 4)
Incubation estimation [link]

Northern Kentucky University
May 2nd, 2020

This is an update of our model from April 9th, 2020. As we prepare for our final exam, I read a story in The Guardian about Italy's struggle to return to normalcy. The final paragraphs:

During the debate in the Senate on Thursday, the opposition parties grilled Conte. Ex-prime minister Matteo Renzi, who has called for less restraint in the reopening, remarked, “The people in Bergamo and Brescia who are gone, those who died of the virus, if they could speak, they’d tell us to relaunch the country for them, in their honour.”

Renzi’s controversial statement was harshly criticised by doctors who warned that the spread of the disease, which, as of Thursday, had killed almost 30,000 people in the country and infected more than 205,000 [ael: my emphasis], was not over and that a misstep could take the entire country back to mid-March coronavirus levels.

“We risk a new wave of infections and outbreaks if we’re not careful,” said Tullio Prestileo, an infectious diseases specialist at Palermo’s Benefratelli Hospital. “If we don’t realise this, we could easily find ourselves back where we started. In that case, we may not have the strength to get back up again.”

I have since updated the dataset, to include total cases from February 24th to May 2nd. I went to Harvard's Covid-19 website for Italy  and and then to their daily updates, available at github. I downloaded the regional csv file for May 2nd,  which had regional totals (21 regions); I grabbed the column "totale_casi" and did some processing to get the daily totals from the 24th of February to the 2nd of May.

The cases I obtained in this way matched those used by Gabo HN.

The initial data they used started on March 3rd (that's the 0 point in this Insight).

You can get a good fit to the data through April 9th by choosing the following (and notice that I've short-circuited the process from the Infectious to the Dead and Recovered). I've also added the Infectious to the Total cases.

The question is: how well did we do at modeling this epidemic through May 2nd (day 60)? And how can we change the model to do a better job of capturing the outbreak from March 3rd until May 2nd?

Incubation Rate:  .025
R0: 3
First Lockdown: IfThenElse(Days() == 5, 16000000, 0)
Total Lockdown: IfThenElse(Days() >= 7, 0.7,0)

(I didn't want to assume that the "Total Lockdown" wasn't leaky! So it gets successively tighter, but people are sloppy, so it simply goes to 0 exponentially, rather than completely all at once.)

deathrate: .01
recoveryrate: .03

"Death flow": [deathrate]*[Infectious]
"Recovery flow": [recoveryrate]*[Infectious]

Total Reported Cases: [Dead]+[Surviving / Survived]+[Infectious]



Resources:
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
3 months ago
Cálculo de Número de Infectados do COVID-19 Cálculo de Ocupação de Leitos de UTI
Cálculo de Número de Infectados do COVID-19
Cálculo de Ocupação de Leitos de UTI
 This Agent-based Model was an idea of Christopher DICarlo "Disease Transmission with Agent Based Model' aims to present the COVID cases in Puerto Princesa City as of June 3, 2021     Insight author: Pia Mae M. Palay
This Agent-based Model was an idea of Christopher DICarlo "Disease Transmission with Agent Based Model' aims to present the COVID cases in Puerto Princesa City as of June 3, 2021

Insight author: Pia Mae M. Palay

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The model is built to demonstrates how Burnie Tasmania can deal with a new COVID-19 outbreaks, taking government policies and economic effects into account. The susceptible people are the local Burnie residents. If residents were infected, they would either recovered or dead. However, even they do r
The model is built to demonstrates how Burnie Tasmania can deal with a new COVID-19 outbreaks, taking government policies and economic effects into account.
The susceptible people are the local Burnie residents. If residents were infected, they would either recovered or dead. However, even they do recover, there is a chance that they will get infected again if immunity loss occurs.
From the simulation result we can see that with the implementation of local government policies including travel ban and social distancing,  the number of infected people will decrease. The number of recovered people will increase in the first 5 weeks but then experience a decrease.
In addition, with the implementation of local government policy, the economic environment in Burnie will be relatively stable when the number of COVID-19 cases is stable.
Description:   This is a system dynamics model of COVID-19 outbreak in Burnie which shows the process of infections and how  government responses, impact on the local economy.       First part is outbreak model, we can know that when people is infected, there are two situations. One is that he recov
Description:

This is a system dynamics model of COVID-19 outbreak in Burnie which shows the process of infections and how  government responses, impact on the local economy.  

First part is outbreak model, we can know that when people is infected, there are two situations. One is that he recovers from  treatment, but even if he recovered, the immunity loss rate increase, makes him to become infected again. The other situation is death. In this outbreak, the government's health policies (ban on non-essential trips, closure of non-essential retailers, limits on public gatherings and quarantine )  help to reduce the spread of the COVID-19 new cases. Moreover,  government legislation is dependent on  number of COVID-19 cases and testing rates. 

 Second part: the model of Govt legislation and economic impact. Gov policy can help to reduce infection rate and local economy at same way. The increase of number of COVID-19 cases has a negative impact on local Tourism industry and economic growth rate. On the other hand, Govt legislation also can be change when reported COVID-19 case are less or equal to 10.






This model is to show the status of numbers of infected people, recovered people and deaths during COVID-19 in Burnie Australia. It also shows impact on the growth of economy.       Variables    The infection rate and the percentage of people washing their hands are influencing the infected number o
This model is to show the status of numbers of infected people, recovered people and deaths during COVID-19 in Burnie Australia. It also shows impact on the growth of economy. 

Variables
The infection rate and the percentage of people washing their hands are influencing the infected number of people. Also, there are death rate and recovery rate and immunity lost rate determining the numbers of deaths, recovered and infected-again people.  
for the economy growth, there are several factors, including unemployment rate, infection rate, economic growth rate and government health policy. 

Perspective
After some time, people will recovered, also the economic activities. 
Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022     Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :   Sabilla Halimatus Mahmud   Nurul Widyastuti Muhammad Na
Model ini dirancang untuk membuat model tentang penyebaran Covid-19 dan vaksinasi di Kabupaten Sleman pada November 2022

Model ini dibuat untuk memenuhi tugas kelompok dari matakuliah Metode Penyelesaian Masalah dan Pemodelan, atas nama :
Sabilla Halimatus Mahmud
Nurul Widyastuti
Muhammad Najib